# **REVIEW ARTICLE**



# Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis

Adriane Aver Vanin<sup>1,2</sup> • Evert Verhagen<sup>3,4</sup> • Saulo Delfino Barboza<sup>4</sup> • Leonardo Oliveira Pena Costa<sup>5</sup> • Ernesto Cesar Pinto Leal-Junior<sup>1,2</sup>

Received: 15 July 2017 / Accepted: 17 October 2017 / Published online: 31 October 2017 © Springer-Verlag London Ltd. 2017

Abstract Researches have been performed to investigate the effects of phototherapy on improving performance and reduction of muscular fatigue. However, a great variability in the light parameters and protocols of the trials are a concern to establish the efficacy of this therapy to be used in sports or clinic. The aim of this study is to investigate the effectiveness, moment of application of phototherapy within an exercise protocol, and which are the parameters optimally effective for the improvement of muscular performance and the reduction of muscular fatigue in healthy people. Systematic searches of PubMed, PEDro, Cochrane Library, EMBASE, and Web of Science databases were conducted for randomized clinical trials to March 2017. Analyses of risk of bias and quality of evidence of the included trials were performed, and authors were contacted to obtain any missing or unclear information. We included 39 trials (861 participants). Data were reported descriptively through tables, and 28 trials were

Ernesto Cesar Pinto Leal-Junior ernesto.leal.junior@gmail.com

- <sup>1</sup> Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235/249, CEP, São Paulo, SP 01504-001, Brazil
- <sup>2</sup> Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- <sup>3</sup> Amsterdam Collaboration on Health and Safety in Sports, IOC Research Centre for Prevention of Injury and Protection of Athlete Health, Amsterdam, The Netherlands
- <sup>4</sup> Department of Public & Occupational Health, Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
- <sup>5</sup> Master's and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil

included in meta-analysis comparing outcomes to placebo. Meta-analysis was performed for the variables: time until reach exhaustion, number of repetitions, isometric peak torque, and blood lactate levels showing a very low to moderate quality of evidence and some effect in favor to photo-therapy. Further investigation is required due the lack of methodological quality, small sample size, great variability of exercise protocols, and phototherapy parameters. In general, positive results were found using both low-level laser therapy and light-emitting diode therapy or combination of both in a wavelength range from 655 to 950 nm. Most of positive results were observed with an energy dose range from 20 to 60 J for small muscular groups and 60 to 300 J for large muscular groups and maximal power output of 200 mW per diode.

**Keywords** Phototherapy · Low-level light therapy · Light emitting diode · Performance · Fatigue · Exercise

# Introduction

Strategies to improve performance and reduce muscular fatigue have been investigated in a number of studies in the sports and physical activity fields [1–3]. The aim of these strategies was to provide improvement in muscular performance, decrease muscular fatigue signals, and shorten the recovery process after an activity. Ultimately, these strategies enable the athlete to be better prepared for training or competition. These strategies may also be beneficial for patients in a rehabilitation process while the potential of more efficient exercises may increase the rehabilitation or recovery process.

Various methods to improve muscular performance or slowing down of the signals of muscular fatigue have been studied, such as massage, warm-up, compression garments, and cryotherapy [4–8]. Scientific evidence regarding the effectiveness of such strategies remains, however, unclear and theoretical [7–9].

Photobiomodulation therapy using low-level laser therapy (LLLT) and light-emitting diode therapy (LEDT) has also been utilized to increase muscular performance and reduce muscular fatigue signals [10, 11]. Photobiomodulation therapy achieving its photobiomodulation effects (i.e., biostimulation or bioinhibition of chemical and physiological functions) when used with optimal parameters inside a specific "therapeutic window" has been well described [12, 13]. Consequently, efforts have been made to establish a range of optimal dose–responses that influence cellular activity [11–14]. Moreover, although the proposed mechanism of photobiostimulation is through increasing cytochrome c-oxidase expression at the mitochondrial level, which leads to an increase in adenosine triphosphate (ATP) production [15, 16], a better muscular response when applied in combination with physical exercise is expected.

Two systematic reviews have been previously published on the effectiveness of photobiostimulation through photobiomodulation therapy on muscular performance [10, 11]. Most studies included in both reviews demonstrated positive outcomes regarding the effectiveness of photobiomodulation therapy on muscle by improving performance and showing ergogenic effects when applied before the exercise. Nonetheless, the results of the published data remained inconclusive, and further research was required to make valid inferences on the estimated effect of photobiomodulation therapy. Since the publication of the last review [11], significant advances have been observed in the literature on the use of photobiomodulation therapy to improve muscle performance [17-20], and the investigation of its effects on this field continues [21]. Therefore, this systematic review aimed to update the current knowledge on the effects of photobiostimulation combined with exercise for muscle performance improvement and muscular fatigue reduction in both athletes and healthy people. Specifically, this systematic review evaluated the effectiveness of the addition of photobiomodulation therapy to an exercise protocol in reducing muscle fatigue and improving muscle performance in healthy individuals between 18 and 40 years; when photobiomodulation therapy should be applied within an exercise protocol to be optimally effective in reducing muscle fatigue and improving muscle performance in healthy individuals; and which photobiomodulation therapy light parameters are optimally effective in reducing muscle fatigue and improving muscle performance in healthy individuals.

# Methods

### **Protocol and registration**

This systematic review was conducted in accordance with the PRISMA statement. The review protocol was prospectively registered in the International Prospective Register of Systematic Reviews (PROSPERO – registration #CRD42015024010), and it can be accessed at https://www. crd.york.ac.uk/PROSPERO/display\_record.asp?ID= CRD42015024010.

# **Eligibility criteria**

Only randomized controlled trials (RCTs) that tested the effectiveness of photobiomodulation therapy (laser or light-emitting diode [LED] lights) in reducing muscle fatigue signals and/or improving muscular performance in healthy adults, athletes, or physically active individuals, from 18 to 40 years old, against no intervention or placebo group were considered as eligible. The participants should have been enrolled in an exercise session or in a strength or aerobic training protocol with photobiomodulation therapy irradiation applied at any time of the physical exercise proposed.

### Search strategy

Systematic electronic searches were conducted on PubMed, Embase, PEDro, Web of Science, and Cochrane Central Register of Controlled Trials. The searches were not limited by date or language of publication, and they were structured following the Cochrane Collaboration recommendations [22]. The last day of the search for articles was March 19, 2017. The reference lists of the full texts screened were searched manually to obtain potentially eligible studies that were not retrieved electronically.

### Study selection

One reviewer (AAV) conducted the searches. This reviewer also screened each article based on title information followed by abstract and keyword analysis. After this first step, two independent reviewers (AAV and EV) conducted the inclusion of all full-text articles that remained for inclusion.

### Evaluation of the risk of bias

Risk of bias of the eligible studies was evaluated through Cochrane Collaboration's tool for assessing risk of bias of randomized trials [22]. The classification of this tool includes seven items assessing risk of bias: selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective reporting), and other sources of biases [22].

The judgment for each item was classified as "low risk" (+), "high risk" (-), or "unclear risk of bias" (?) [22]. The last was considered when information is lacking or uncertain regarding the potential risk of bias. Two reviewers (AAV and SDB) scored

| Table 1                      | Methods, pa | urticipants, inte | rventions, and outcomes                                              |                   |                                                                                                                                                                  |                                                                                                                                                                                                                                             |                                                                                                           |                                                                                                                                                                                                            |
|------------------------------|-------------|-------------------|----------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                      | Year        | Setting           | Design                                                               | Sample size $(n)$ | Participants                                                                                                                                                     | Outcome assessment condition                                                                                                                                                                                                                | Placebo                                                                                                   | Main outcomes                                                                                                                                                                                              |
| Almeida<br>et al.<br>[24]    | 2012        | Laboratory        | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial  | 10                | Untrained healthy male<br>students (22.30<br>± 2.26 vears)                                                                                                       | Isometric contraction of elbow<br>flexors (nondominant arm) on the<br>Scott bench for 60 s                                                                                                                                                  | Not specified.                                                                                            | Peak force (kgf)<br>Average force (kgf)                                                                                                                                                                    |
| Alves et al.<br>[25]         | 2014        | Laboratory        | Randomizery duuble-blind,<br>placebo-controlled,<br>crossover trial. | ∞                 | Untrained healthy male and female $(22 \pm 1 \text{ years})$                                                                                                     | Cardiopulnonary exercise testing in<br>electromagnetic cycle ergometer<br>(70 rpm).                                                                                                                                                         | Device turned off.                                                                                        | Total exercise time (s)<br>Heart rate (HR, bpm)<br>Absolute VO2 max<br>(mL/min)<br>Relative VO2 max<br>(mL/kg min)<br>Work load<br>RPE<br>Systolic blood pressure<br>(mmHg)<br>Blood lactate concentration |
| Antonialli<br>et al.<br>[14] | 2014        | Laboratory        | Randomized, double-blinded,<br>placebo-controlled trial.             | 40                | Untrained healthy male (24.10 $\pm$ 1.52 years).                                                                                                                 | Eccentric isokinetic exercise protocol<br>(knee extensor musculature of the<br>nondominant leg—five sets of 15<br>reps, velocity of 60°/seg).                                                                                               | Device turned on but<br>without laser<br>irradiation.                                                     | Luctuonityogtapiny laugue<br>threshold (s)<br>Isometric peak torque<br>(MVC-Nm)<br>DOMS (VAS - mm)<br>CK activity (U/L)                                                                                    |
| Baroni<br>et al.<br>[26]     | 2010a       | Laboratory        | Randomized double-blind<br>placebo-controlled trial.                 | 36                | Untrained healthy male (25.35 $\pm$ 3.41 years LLLT group, 24.28 $\pm$ 5.48 years placebo group)                                                                 | Eccentric isokinetic exercise protocol<br>(knee extensor musculature of the<br>nondominant leg—five sets of 15<br>reps, velocity of 60°/seg).                                                                                               | Device turned off.                                                                                        | DOMS-algometry (kgt)<br>Isometric peak torque<br>(MVC-Nm)<br>DOMS<br>DOMS<br>CK activity (IU/L)                                                                                                            |
| Baroni<br>et al.<br>[27]     | 2010b       | Laboratory        | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial. | 17                | Untrained, healthy and physically active subjects $(26.29 \pm 4.33 \text{ years}).$                                                                              | 30 maximal isokinetic concentric<br>repetitions of knee<br>flexion-extension performed at an<br>angular velocity of 180°/seg with<br>a 90-degree ROM (knee extensor                                                                         | Device turned off.                                                                                        | LUPL (LU/L)<br>Isometric peak torque<br>(MVC-Nm)<br>AVG peak torque (Nm)<br>AVG power (W)<br>Total work (J)                                                                                                |
| Baroni<br>et al.<br>[66]     | 2015        | Laboratory        | Randomized clinical trial                                            | 30                | Untrained, healthy male<br>(23.20 $\pm$ 2.15 years control<br>group, 24.50 $\pm$ 3.53 years<br>training group, and 21.60<br>$\pm$ 2.63 years training +<br>LLLT) | musculature of the dominant leg).<br>8-week knee extensor isokinetic<br>eccentric training program<br>(eccentric isokinetic exercise<br>protocol - knee extensor muscula-<br>ture of the nondominant leg_34<br>sets of 10 reps, velocity of | No placebo group.                                                                                         | Work fatigue index (%)<br>Isometric peak torque<br>(MVC-Nm)<br>Concentric peak torque<br>(Nm)<br>Eccentric peak torque (Nm)<br>Muscle thickness (cm)                                                       |
| Borges<br>et al.<br>[28]     | 2014        | Laboratory        | Randomized double-blinded<br>placebo-controlled trial.               | 17                | Untrained healthy male (22<br>± 1 years LEDT and 21<br>± 1 years placebo)                                                                                        | 60%seg).<br>30 eccentric contractions with a load<br>of 100% of maximal voluntary<br>isometric contraction strength of<br>the elbow flexors of the<br>nondominant arm (weighted                                                             | A small protective shield<br>was placed over the tip<br>of the probe LEDT<br>blocking the<br>irradiation. | Isometric muscle strength<br>(N)<br>Muscle soreness (cm)<br>Elbow range of motion<br>(ROM-deg)                                                                                                             |
| De Marchi<br>et al.<br>[29]  | 2012        | Laboratory        | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial. | 22                | Untrained healthy male (22.02<br>± 3.02 years).                                                                                                                  | dumbbells).<br>Progressive running protocol on a<br>motor-driven treadmill                                                                                                                                                                  | Not specified.                                                                                            | Time to exhaustion (s)<br>Absolute VO2 max (L/min)<br>Relative VO2 max<br>(mL/kg min)<br>Aerobic threshold (s and<br>L/min)<br>Amerobic threshold (s and<br>L/min)<br>TBARS (mmol/mL)                      |

Lasers Med Sci (2018) 33:181–214

183

 $\underline{\textcircled{O}}$  Springer

| Table 1 (c                  | ontinued) |            |                                                                        |                 |                                                                                                                                   |                                                                                                                                                                                |                                                                                        |                                                                                                                                        |
|-----------------------------|-----------|------------|------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Authors                     | Year      | Setting    | Design                                                                 | Sample size (n) | Participants                                                                                                                      | Outcome assessment condition                                                                                                                                                   | Placebo                                                                                | Main outcomes                                                                                                                          |
|                             |           |            |                                                                        |                 |                                                                                                                                   |                                                                                                                                                                                |                                                                                        | Carbonylated proteins<br>(mnol)<br>SOD activity (U SOD/g of<br>protein)<br>CAT activity (U CAT/mg of<br>protein)<br>CAT activity (U/L) |
| De Marchi<br>et al.<br>[17] | 2017      | Laboratory | Randomized, double-blinded,<br>placebo-controlled trial                | 40              | Healthy physically active male volunteers (25.30 ± 3.32)                                                                          | Fatigue-induced protocol by<br>performing 5 sets of 10<br>eccentric/concentric contractions<br>of the elbow flexors (isokinetic<br>dynamometer)                                | Device turned on but<br>without laser<br>irradiation.                                  | ILULI (U/L)<br>Isometric Peak torque<br>(MVC-Nm)<br>DOMS<br>DOMS<br>TBARS (nmol/mL)<br>Carbonylated proteins<br>(nmol)                 |
| De Paiva<br>et al.<br>[18]  | 2016      | Laboratory | Randomized, double-blind,<br>placebo-controlled clinical<br>trial      | 50              | Untrained healthy male (24.98 $\pm$ 5.9 years).                                                                                   | Eccentric isokinetic exercise protocol<br>(knee extensor musculature of the<br>nondominant leg-five sets of 15                                                                 | Device turned on but<br>without laser<br>irradiation.                                  | CK activity (U/L)<br>MVC<br>DOMS<br>CK activity (U/L)                                                                                  |
| De Souza<br>et al.<br>[19]  | 2016      | Laboratory | Randomized, blinded<br>controlled clinical trial                       | 60              | Young and physically active<br>volunteers of both genders $(22.6 \pm 2.7)$                                                        | Fatigue-induced protocol by<br>performing 100 isokinetic<br>concentric contractions of ankle<br>plantar flexors at a speed of 90%.                                             | Second pen of the laser<br>device which was<br>disconnected and did<br>not effectively | Dynamometric fatigue<br>index<br>Median frequency                                                                                      |
| Denis et al.<br>[30]        | 2013      | Laboratory | Randomized, single-blinded,<br>placebo-controlled,<br>crossover trial. | 18              | Athletes healthy male (soccer, hockey, and rugby union) (22.1 ± 4.1 years).                                                       | Wingate anacrobic test<br>Yoyo intermittent recovery test                                                                                                                      | Not specified.                                                                         | Work (k.J)<br>Blood lactate levels<br>(mmol/L)<br>Peak power (W)                                                                       |
| Felismino<br>et al.<br>[31] | 2014      | Laboratory | Randomized double-blind<br>placebo-controlled study.                   | 22              | Physically active healthy males $(25.09 \pm 4.6 \text{ years placebo}$ group and $26.1 \pm 4.1 \text{ years}$ $1.17 \text{ monu}$ | Biceps curl exercise—10 sets of 10<br>repetitions with a load of 50% of<br>1RM                                                                                                 | Device turned off                                                                      | L'RM                                                                                                                                   |
| Ferraresi<br>et al.<br>[32] | 2011      | Laboratory | Randomized controlled clinical<br>trial.                               | 36              | Healthy male (19.7 $\pm$ 0.8 years training + laser group, 21.2 $\pm$ 2.5 years training group, and 21.8 $\pm$ 2.1 years control  | Dynamic strength training program<br>involving the leg-press exercise<br>twice a week for 12 consecutive<br>weeks.                                                             | No placebo group.                                                                      | 1-RM leg test (%),<br>MPID test<br>Thigh perimetry (%)                                                                                 |
| Ferraresi<br>et al.<br>[56] | 2015      | Field      | Randomized, double-blind,<br>and placebo-controlled trial.             | 12              | group). Athletes (male volleyball players) ( $25.5 \pm 5.3$ years).                                                               | 4 matches during a national championship.                                                                                                                                      | Device turned on but<br>without laser<br>irradiation.                                  | CK activity (U/L)                                                                                                                      |
| Fritsch<br>et al.<br>[33]   | 2016      | Laboratory | Randomized, double-blinded,<br>placebo-controlled trial                | 24              | healthy male volunteers (24 $\pm 2.58$ )                                                                                          | Plyometric exercises                                                                                                                                                           | Device turned off                                                                      | Isometric Peak torque<br>(MVC-Nm)<br>Echo intensity<br>(ultrasonography)<br>Muscle correnses (XAS)                                     |
| Gorgey<br>et al.<br>[34]    | 2008      | Laboratory | Randomized, crossover trials<br>(pilot study)                          | Ś               | Untrained healthy male students ( $19 \pm 0.7$ years).                                                                            | NMES protocol was delivered for<br>3 min to induce fatigue in the knee<br>extensor muscle group (two test<br>trials (LLLT $3 e 7J + NMES$ ) and<br>a control frial (NMES only) | No placebo group.                                                                      | MVC (Nm)                                                                                                                               |
| Hemmings<br>et al.<br>[35]  | 2017      | Laboratory | Randomized, blind<br>placebo-controlled cross-<br>over trial           | 34              | recreational resistance-trained athletes (both genders) $(21.1 \pm 2.0)$                                                          | Eccentric leg extension with 120% of MVC until fatigue (isokinetic dynamometer).                                                                                               | Device turned off and the<br>beep sound was<br>simulated from<br>another laser probe.  | Number of repetitions<br>Isometric Peak torque<br>(MVC-Nm)<br>Blood lactate                                                            |

 $\underline{\widehat{\mathcal{D}}}$  Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

| Table 1 (c                    | ontinued) |            |                                                                       |                   |                                                                                                                                                        |                                                                                                                                     |                                                                               |                                                                                                                                                   |
|-------------------------------|-----------|------------|-----------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                       | Year      | Setting    | Design                                                                | Sample size $(n)$ | Participants                                                                                                                                           | Outcome assessment condition                                                                                                        | Placebo                                                                       | Main outcomes                                                                                                                                     |
| Higashi<br>et al.<br>[36]     | 2013      | Laboratory | Randomized, triple-blind,<br>placebo-controlled,<br>crossover trial.  | 20                | Active healthy females (21.9<br>± 1.1 years).                                                                                                          | Elbow flexion-extension movement<br>as possible with 75% of weight of<br>1-RM.                                                      | Not specified                                                                 | Blood lactate ( <i>p</i><br>value/graphs), EMG<br>fatigue ( <i>p</i> value/graphs),<br>Number of elbow                                            |
| Kelencz<br>et al.<br>[37]     | 2010      | Laboratory | Randomized clinical trial.                                            | 30                | Healthy males and females (7<br>men, 23 women) (23<br>± 3 years).                                                                                      | MVC lasted 60 s.                                                                                                                    | Device turned off                                                             | tuons<br>Activity of the right<br>masseter $(\mu V)$<br>Activity of the left masseter<br>$(\mu V)$<br>Maximal force $(kgf)$<br>Mean force $(kgf)$ |
| Leal-Junior<br>et al.<br>[38] | 2008      | Laboratory | Randomized double-blind<br>placebo-controlled trial.                  | 12                | Athletes (male volleyball players) ( $22 \pm 3$ years)                                                                                                 | Voluntary biceps contractions - load of 75% of the MVC                                                                              | a small protective shield<br>was placed over the tip<br>of the probe blocking | time to extransion (s)<br>Blood lactate (mmol/L)<br>Time to exhaustion (s)<br>Number of repetitions                                               |
| Leal-Junior<br>et al.<br>[39] | 2009a     | Laboratory | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial.  | ×                 | Athletes (male volleyball<br>players) (18.50<br>± 0.93 years)                                                                                          | Wingate test (cycling at maximal speed for 30 s with a load of 7.5% of the athlete's body weight)                                   | Not specified                                                                 | Blood lactate (mmol/L)<br>CK activity (U/L)<br>Peak power output (W/kg)                                                                           |
| Leal-Junior<br>et al.<br>[40] | 2009b     | Laboratory | Randomized double-blinded<br>placebo-controlled cross-<br>over trial. | 10                | Athletes (male volleyball players) $(23.6 \pm 5.6$ years).                                                                                             | Voluntary biceps humeri contractions<br>with a workload of 75% of their<br>maximal voluntary contraction<br>force.                  | Not specified                                                                 | Number of repetitions<br>Number of repetitions<br>Time to exhaustion (s)<br>CK activity (U/L)<br>Blood lactate (mmol/L)<br>CRP layels (mod/L)     |
| Leal-Junior<br>et al.<br>[41] | 2009c     | Laboratory | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial   | 20                | Athletes (male volleyball and<br>soccer players).<br>Volleyball $n = 9 (20.67 \pm 2.96 \text{ years})$<br>Soccer $n = 11 (16.18 + 0.75 \text{ years})$ | Wingate test (cycling at maximum speed for 30 s against a load of $7.5\%$ of the athlete's body weight).                            | Not specified                                                                 | Muscle Work (I)<br>Blood lactate (mmo/L)<br>CK activity (U/L)                                                                                     |
| Leal-Junior<br>et al.<br>[42] | 2009d     | Laboratory | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial   | 10                | Athletes (male volleyball players) (22.30 $\pm$ 6.09 years).                                                                                           | Voluntary biceps humeri contractions<br>with a workload of 75% of their<br>maximal voluntary contraction<br>force                   | Not specified                                                                 | Number of repetitions<br>Blood lactate (mmol/L)<br>Time to exhaustion (s)                                                                         |
| Leal-Junior<br>et al.<br>[43] | 2010      | Laboratory | Randomized double-blind<br>placebo-controlled cross-<br>over trial.   | 6                 | Athletes (male volleyball players) (18.6 ± 1 years).                                                                                                   | Voluntary biceps humeri contractions<br>with a workload of 75% of their<br>maximal voluntary contraction<br>force until exhaustion. | Not specified.                                                                | Number of repetitions<br>Time to exhaustion (s)<br>Blood lactate (mmol/L)<br>CK activity (UL)                                                     |
| Leal-Junior<br>et al.<br>[44] | 2011a     | Laboratory | Randomized double-blind<br>placebo-controlled cross-<br>over trial    | 9                 | Athletes (male young futsal athletes) (20.67 $\pm$ 2.96).                                                                                              | Wingate test (cycling at maximum<br>speed for 30 s against a load of<br>7.5% of the athlete's body<br>weight).                      | Not specified.                                                                | Creative protein (mg/uL)<br>Peak Power (W/kg)<br>Mean Power (W/kg)<br>Blood lactate levels<br>(mmo/L)<br>C activity (U/L)                         |
| Leal-Junior<br>et al.<br>[45] | 2011b     | Laboratory | Randomized double-blind<br>placebo-controlled cross-<br>over trial.   | 9                 | Athletes (male volleyball players) (18.57 $\pm$ 0.98 years).                                                                                           | Wingate test (cycling at maximum<br>speed for 30 s against a load of<br>7.5% of the athlete's body                                  | Equipment on placebo<br>mode (without active<br>irradiation)                  | Peak power (W/kg)<br>Mean power (W/kg)<br>Fatigue index (%)<br>TD A DS Lando (cmol/ort)                                                           |
| Maciel<br>et al.<br>[46]      | 2013      | Laboratory | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial   | ٢                 | Athletes (female volleyball players) (22.57 $\pm$ 3.82 years).                                                                                         | Jumps and isometric plantiflexion<br>exercise                                                                                       | Not specified.                                                                | Park force (N)<br>Peak force (N)<br>Horizontal jump (cm)<br>Vertical jump (cm)<br>Time to fatigue (s)                                             |

| Table 1 (c                | ontinued) |            |                                                                                 |                   |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                |
|---------------------------|-----------|------------|---------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                   | Year      | Setting    | Design                                                                          | Sample size $(n)$ | Participants                                                                                                                                 | Outcome assessment condition                                                                                                                                 | Placebo                                                                                                                                         | Main outcomes                                                                                                                                  |
|                           |           |            |                                                                                 |                   |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                 | RMS lateral gastrocnemius $(\mu V)$<br>RMS medial gastrocnemius $RMS$                                                                          |
| Malta et al.<br>[47]      | 2016      | Laboratory | Randomized, crossover,<br>double-blind,<br>placebo-controlled clinical<br>trial | 15                | Caucasian males moderately active and healthy males $(25.1 \pm 4.4 \text{ years})$                                                           | Graded exercise test and two<br>supramaximal efforts at 115% of<br>the intensity associated with<br>maximal oxygen uptake.                                   | Device turned off and<br>subjects using<br>blindfolds and<br>wearing headphones<br>to avoid perceiving<br>light and sound<br>signals during the | Allerrative maximal<br>accumulated oxygen<br>deficit (MAOD <sub>ALT</sub> )<br>Time to exhaustion<br>Respiratory exchange ratio<br>RPE         |
| Miranda<br>et al.<br>[20] | 2016      | Laboratory | Randomized, double-blind,<br>placebo-controlled,<br>crossover trial             | 20                | Untrained healthy male (26.0 $\pm$ 6.0 years).                                                                                               | Progressive cardiopulmonary test on<br>a treadmill.                                                                                                          | LEDT session.<br>Device turned on but<br>without laser<br>irradiation.                                                                          | Distance covered (km)<br>Time until exhaustion (s)<br>Pulmonary ventilation<br>(1/min)                                                         |
|                           |           |            |                                                                                 |                   |                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                 | Oxygen uptake (mL/kg/min<br>Carbon dioxide production<br>(mL/kg/min)                                                                           |
| Pinto et al.<br>[48]      | 2016      | Field      | Randomized, double-blind,<br>placebo controlled,<br>crossover trial.            | 12                | Athletes (male rugby players) (23.50 $\pm$ 2.32 years)                                                                                       | Bangsboo Sprint Test (BST) (field test)                                                                                                                      | Device turned on but<br>without laser<br>irradiation.                                                                                           | Dyspnea score<br>Biodo lactate (mmol/L)<br>Fatigue Perception<br>(questionmaire)<br>ST-Mean (from BST)<br>ST-Best (from BST)                   |
| Reis et al.<br>[49]       | 2014      | Laboratory | Randomized, double blind, and<br>placebo controlled                             | 27                | Athletes (male soccer players) $(22.62 \pm 8.03 \text{ years})$                                                                              | Leg extension exercise with a load at 75% of 1RM.                                                                                                            | Not specified                                                                                                                                   | Fatigue mdcs (from BS 1)<br>Blood lactate (mmol/L)<br>CK activity (U/L)<br>Time to fatigue (s)<br>Number of repetitions<br>75% of maximum load |
| Rossato<br>et al.<br>[50] | 2016      | Laboratory | Randomized, crossover,<br>double-blind,<br>placebo-controlled trial             | 10                | Physically active healthy male $(29 \pm 6.0 \text{ years})$                                                                                  | Isometric contraction at 60% of MVC.                                                                                                                         | Device turned off                                                                                                                               | (KM)<br>Time to exhaustion<br>Isometric Peak torque<br>(MVC-Nm)                                                                                |
| Vanin et al.<br>[51]      | 2016a     | Laboratory | Randomized, double-blind,<br>placebo-controlled trial                           | 28                | High-level soccer athletes                                                                                                                   | Eccentric isokinetic exercise protocol (knee extensor musculature of the nondominant leg—five sets of 15 reps, velocity of 60%seg).                          | Device turned off                                                                                                                               | EMU<br>Isometric Peak torque<br>(MVC-Nm)<br>DOMS<br>CK activity                                                                                |
| Vanin et al.<br>[52]      | 2016b     | Laboratory | Randomized, double-blind,<br>placebo-controlled trial                           | 48                | Physically active healthy males $(26 \pm 5.24 \text{ years})$                                                                                | Leg Press and Leg Extension<br>exercises twice a week—5 series<br>of 10 repetitions with 80% of 1                                                            | Device turned on but<br>without laser<br>irradiation.                                                                                           | IL-6 expression<br>Isometric Peak torque<br>(MVC-Nm)<br>1-RM                                                                                   |
| Vieira et al.<br>[53]     | 2012      | Laboratory | Randomized controlled clinical<br>trial.                                        | 45                | Physically active healthy female students (21.2 $\pm 2.1$ years control group, 20.5 $\pm 1.3$ years training group, and 21.2 $\pm 1.7$ years | Cycle ergometer exercise with load<br>applied to the ventilatory<br>threshold (VT) for three times a<br>week for 9 consecutive weeks-<br>endurance training. | No placebo group                                                                                                                                | Fatigue index (Flext - %?)<br>Total work (TWext - J?)<br>Ventilatory threshold<br>Body mass (kg)<br>BMI (kg/m <sup>2</sup> )                   |
| Vieira et al.<br>[54]     | 2014      | Laboratory | Randomized, double-blind,<br>placebo controlled,<br>crossover trial.            | ٢                 | training with LLL1 group)<br>young men $(21 \pm 3$ years of<br>age) who were clinically<br>healthy                                           | Three sets of 20 RM of knee<br>flexion-extensions using an<br>isokinetic dynamometer at 60°/s<br>(workout)                                                   | Device probe turned off.                                                                                                                        | RM<br>EMG fåtigue index                                                                                                                        |

🖄 Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

| Table 1                                   | (continued)                                       |                                                       |                                                                                                                    |                                                      |                                                                                                               |                                                                                                                                             |                                                                                      |                                                                                                                                                                                |
|-------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                                   | Year                                              | Setting                                               | Design                                                                                                             | Sample size (n)                                      | Participants                                                                                                  | Outcome assessment condition                                                                                                                | Placebo                                                                              | Main outcomes                                                                                                                                                                  |
| Zagatto<br>et al.<br>[55]                 | 2016                                              | Field                                                 | Randomized, double-blinded,<br>placebo-controlled trial.                                                           | 20                                                   | Athletes (male water polo<br>players) (15.4 $\pm$ 1.2 years)                                                  | Five training days                                                                                                                          | Device turned on but<br>without laser<br>irradiation.                                | Time to cover 200-m maxi-<br>mal swimming (P200)<br>30-s crossbar jump test<br>(30CJ)<br>RPE (a.u.)<br>IL-16 (pg/mL)<br>TNF-alpha (pg/mL)<br>Creatine kinase activity<br>(U/L) |
| <i>LEDT</i> liξ<br>dehydroξ<br>isokinetic | ght-emitting (<br>genase, RPE 1<br>; muscle perfe | fiode therapy,<br>rating of percel<br>ormance in isol | <i>LLLT</i> low-level laser therapy, N ived exertion, <i>BMI</i> body mass i kinetic dynamometry, <i>ST-mean</i> 1 | <i>MES</i> neuro<br>ndex, <i>RM</i> 1<br>nean sprint | muscular electrical stimulatio<br>epetition maximum, <i>EMG</i> ele<br>time, <i>ST-Best</i> best sprint time, | n, <i>CK</i> creatine kinase, <i>MVC</i> maxin<br>ctromyography, <i>DOMS</i> delayed ons<br><i>BST</i> Bangsbo test, <i>CRP</i> C- reactive | nal voluntary contraction,<br>tet muscle soreness, VAS of<br>protein, SOD superoxide | <i>IL</i> interleukin, <i>LDH</i> lactate<br>visual analogic scale, <i>MPDI</i><br>dismutase, <i>CAT</i> catalase                                                              |

each trial independently for risk of bias. A third reviewer (EV) was consulted for consensus rating whenever needed.

### Quality of evidence

The quality of evidence was assessed using the GRADE approach [22]. The quality of evidence of the included studies refers to a body of studies, and not to individual studies. Some factors, such as risk of bias, inconsistency, indirectness, imprecision, and publication bias, are associated with this judgment, and they may lead to upgrading or downgrading the quality of evidence of an outcome from a group of studies [22, 23]. The quality of evidence in the estimate of the effect), moderate (the true effect is close to the estimate of the effect), low (the confidence of the effect is limited), and very low (little confidence of the effect estimate) [23].

# **Data extraction**

Data were extracted from studies on participants' characteristics (healthy adults), interventions (photobiomodulation therapy) compared with control and/or placebo groups, exercise protocol enrolled (short- or long-term exercise, any type of exercise protocol), moment of irradiation (before, during, or after an exercise session), and variables related to reducing fatigue signals and/or improvement of performance. Data extraction was performed by one reviewer in a standardized predefined way, and summarized by tabulation (Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). In case data were not reported in the article, the correspondent author was contacted by e-mail. A reminder e-mail was sent after 1 week. Their answers or lack of "response" were noted.

For the purpose of this review, muscular *performance* is defined as the capacity of the skeletal muscle to generate force to be developed in a certain physical exercise or sport. The variables most related to muscular performance were strength [57], power, and endurance [58, 59], and they are generally measured by isokinetic dynamometer tests, functional tests, and variables related with exercise execution. Muscle fatigue can negatively affect optimal muscle capacity [60]; thus, both concepts are enrolled.

In this perspective, we define *muscle fatigue* as a gradual decrease in maintaining the maximal capacity of force generation or power output, and it reflects the decrease of performance and impairment in motor control [58, 61–63]. Peak torque, total work, fatigue index, mean peak torque are variables frequently associated with muscle function; therefore, the rate of decrease of these indices can estimate muscle fatigue [58, 62]. Muscle fatigue is frequently related to the inability to continue the execution of the exercise, impairment in muscle contraction, effort perceived, and increase in blood levels of muscle damage markers [64, 65].

With these concepts in mind, the variables chosen are involved in modulating biochemical marker release (such as

# Table 2 Photobiomodulation therapy parameters (intervention)

| Authors                         | Source of light                                                                                                         | Wavelength (nm)                                                          | Energy density<br>per diode (J/cm <sup>2</sup> )                                                                                                                                     | Energy per site (J)                                                                                                                                                                                                                             | Power density<br>per diode (W/cm <sup>2</sup> )          | Spot size (cm <sup>2</sup> )                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Almeida et al. [24]             | Red or Infrared LLLT                                                                                                    | 660 or 830                                                               | 1.785                                                                                                                                                                                | 5                                                                                                                                                                                                                                               | 17.85                                                    | 0.0028                                                                                                           |
| Alves et al. [25]               | Infrared LLLT (cluster                                                                                                  | 850                                                                      | 40                                                                                                                                                                                   | 14 (2 J per diode)                                                                                                                                                                                                                              | 2                                                        | 0.05                                                                                                             |
| Antonialli et al. [14]          | with / diodes)<br>Super-pulsed LLLT, red<br>LEDTs and<br>infrared LEDTs                                                 | Cluster of 12 diodes<br>(4 of 905 nm, 4<br>of 875 nm and 4<br>of 640 nm) | 10 J: 0.05 (905 nm)<br>1.27 (640 nm)<br>1.48 (875 nm)<br>30 J: 0.16 (905 nm)<br>3.80 (640 nm)<br>4.42 (875 nm)<br>50 J: 0.27 (905 nm)<br>6.35 (640 nm)<br>7.41 (875 nm) <sup>a</sup> | 10, 30 or 50                                                                                                                                                                                                                                    | 0.00071 (905 nm)<br>0.01666 (640 nm)<br>0.01944 (875 nm) | 20 cm <sup>2</sup> (cluster):<br>- 0.44 cm <sup>2</sup> (905 nm)<br>- 0.9 cm <sup>2</sup> (875 nm<br>and 640 nm) |
| Baroni et al. [26]              | Infrared LLLT (cluster                                                                                                  | 810                                                                      | 206.89 <sup>a</sup>                                                                                                                                                                  | 30 J (6 J each diode)                                                                                                                                                                                                                           | 6.89 <sup>a</sup>                                        | 0.029                                                                                                            |
| Baroni et al. [27]              | With Tive clodes)<br>Red and infrared<br>LEDTs (cluster<br>probe with 34 diodes of<br>red and 35 diodes of<br>infrared) | 660 and 850                                                              | 1.5 J/cm <sup>2</sup> (red), 4.5<br>J/cm <sup>2</sup> (infrared)                                                                                                                     | 41.7                                                                                                                                                                                                                                            | 0.05 (red),<br>0.15 (infrared)                           | 0.2                                                                                                              |
| Baroni et al. [66] <sup>b</sup> | Infrared LLLT (cluster<br>with five diodes)                                                                             | 810                                                                      | 206.89 <sup>a</sup>                                                                                                                                                                  | 30 J (6 J each diode)                                                                                                                                                                                                                           | 6.89 <sup>a</sup>                                        | 0.029                                                                                                            |
| Borges et al. [28]              | Red LEDT (single diode)                                                                                                 | 630                                                                      | 5.1                                                                                                                                                                                  | 9 <sup>a</sup>                                                                                                                                                                                                                                  | 0.1695 <sup>a</sup>                                      | 1.77                                                                                                             |
| De Marchi et al. [29]           | Infrared LLLT (cluster                                                                                                  | 810                                                                      | 164.85                                                                                                                                                                               | 30 (6 J each diode)                                                                                                                                                                                                                             | 5.495                                                    | 0.0364                                                                                                           |
| De Marchi et al. [17]           | Red and infrared LEDTs (cluster<br>with 34 red and 35<br>infrareds diodes)                                              | 660 and 850                                                              | 1.5 (red) and 4.5 (infrared)                                                                                                                                                         | 41.7 (0.3 from each red<br>LED and 0.9 from<br>each infrared laser)                                                                                                                                                                             | 0.05 (for red) and<br>0.15 (for infrared)                | 28.2 (cluster)-0.2<br>each diode                                                                                 |
| De Paiva et al. [18]            | Super-pulsed LLLT, Red<br>LEDTs and Infrared LEDTs                                                                      | Cluster of 9 diodes<br>(1 of 905 nm, 4<br>of 875 nm and<br>4 of 640 nm)  | 0.85 (905 nm)<br>5 (640 nm)<br>5.83 (875 nm)                                                                                                                                         | 39.37                                                                                                                                                                                                                                           | 0.00284 (905 nm)<br>0,01667(640 nm)<br>0,01944 (875 nm)  | 4 cm <sup>2</sup><br>- 0.44 cm <sup>2</sup> (905 nm)<br>- 0.9 cm <sup>2</sup> (875 nm<br>and 640 nm)             |
| De Souza et al. [19]            | Infrared LLLT (single diode)                                                                                            | 808                                                                      | 1785 <sup>a</sup>                                                                                                                                                                    | 5                                                                                                                                                                                                                                               | 35.7                                                     | 0.0028                                                                                                           |
| Denis et al. [30]               | Red and Infrared LEDTs<br>(cluster probe with 34<br>red LEDs and 35<br>infrared LEDs)                                   | 660 and 950                                                              | 1.5 (red) and<br>2.25 (infrared) <sup>a</sup>                                                                                                                                        | 25.95                                                                                                                                                                                                                                           | 0.05 (red) and<br>0.075 (infrared)                       | 0.2                                                                                                              |
| Felismino et al. [31]           | Infrared LLLT (single diode)                                                                                            | 808 nm                                                                   | 357.14                                                                                                                                                                               | 1                                                                                                                                                                                                                                               | 35.71                                                    | 0.0028                                                                                                           |
| Ferraresi et al. [32]           | with six diodes)                                                                                                        | 808                                                                      | 214.28                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                             | 21.42                                                    | 0.0028                                                                                                           |
| Ferraresi et al. [56]           | LEDT (array of 200<br>diodes—100 infrared<br>and 100 red)                                                               | 850 and 630                                                              | 105 J: 0.93 (850 nm)<br>and 0.57 (630 nm)<br>210 J: 1.86 (850 nm)<br>and 1.14 (630 nm)<br>315 J: 2.78 (850 nm)<br>and 1.71 (630 nm)                                                  | 105, 210 or 315                                                                                                                                                                                                                                 | 0.1625 (infrared)<br>and 0.1 (red)                       | 0.2                                                                                                              |
| Fritsch et al. [33]             | Infrared LLLT (cluster<br>with five diodes)                                                                             | 850                                                                      | 206.9                                                                                                                                                                                | 30                                                                                                                                                                                                                                              | 6.9                                                      | 0.029                                                                                                            |
| Gorgey et al. [34]              | Infrared LLLT                                                                                                           | 808                                                                      | na                                                                                                                                                                                   | 3 or 7                                                                                                                                                                                                                                          | 0.0083                                                   | Not applicable                                                                                                   |
| Hemmings et al. [35]            | Red and Infrared LEDTs<br>(cluster with 34<br>red and 35 infrared diodes)                                               | 660 and 850                                                              | 41.7 J: 1.4 (red) and<br>4.5 (infrared)<br>83.4 J: 3 (red) and 9<br>(infrared)<br>166.8 J: 6 (red) and 18<br>(infrared)                                                              | <ul> <li>41.7 (0.3 from each<br/>red LED and 0.9<br/>from each infrared<br/>LLLT)</li> <li>83.4 (0.6 from each<br/>red LED and 1.8<br/>from each infrared)</li> <li>166.8 (1.2 from each<br/>red LED and 3.6 from<br/>each infrared)</li> </ul> | 0.05                                                     | 28.2 (cluster)–0.2<br>each diode                                                                                 |
| Higashi et al. [36]             | Infrared LLLT (single diode)                                                                                            | 808                                                                      | 250                                                                                                                                                                                  | 7                                                                                                                                                                                                                                               | 35.7                                                     | 0.0028                                                                                                           |
| Kelencz et al. [3/]             | Red LEDT (single diode)                                                                                                 | 640                                                                      | 2, 4, or 6                                                                                                                                                                           | 1.044, 2.088, or 3.132                                                                                                                                                                                                                          | 0.222                                                    | 0.522                                                                                                            |
| Leal-Junior et al. [39]         | Infrared LLLT (single diode)<br>or red and infrared LEDTs<br>(cluster with 34 red and<br>35 infrareds diodes)           | 850 (LELT)/660 and<br>850 (LEDs)                                         | 164.84/1.5 and 4.5                                                                                                                                                                   | 6/41.7                                                                                                                                                                                                                                          | 5.50/0.05 and 0.15                                       | 0.0364/0.2                                                                                                       |
| Leal-Junior et al. [40]         | Red and infrared<br>LEDTs (cluster with<br>34 red and 35<br>infrareds diodes)                                           | 660 and 850                                                              | 1.5 (red) and<br>4.5 (infrared)                                                                                                                                                      | 41.7 (0.3 from each red<br>LED and 0.9<br>from each<br>infrared laser)                                                                                                                                                                          | 0.05 (red) and<br>0.15 (infrared)                        | 0.2                                                                                                              |
| Leal-Junior et al. [41]         | Infrared LLLT (single diode)                                                                                            | 830                                                                      | 1071.42 or 1428.57                                                                                                                                                                   | 3 or 4 J                                                                                                                                                                                                                                        | 35.71                                                    | 0.0028                                                                                                           |
| Leal-Junior et al. [42]         | Infrared LLLT (single diode)                                                                                            | 830                                                                      | 1785.71                                                                                                                                                                              | 5                                                                                                                                                                                                                                               | 35.7                                                     | 0.0028                                                                                                           |
| Leal-Junior et al. [43]         | Infrared LLLT (cluster<br>with 5 diodes)                                                                                | 810                                                                      | 164.85                                                                                                                                                                               | 30 J (6 J each diode)                                                                                                                                                                                                                           | 5.495                                                    | 0.0364                                                                                                           |
| Leal-Junior et al. [44]         | Red and infrared LEDTs<br>(cluster with 34                                                                              | 660 and 850                                                              | 1.5 (red) and 4.5 (infrared)                                                                                                                                                         | 41.7 (0.3 from each<br>red LED and 0.9                                                                                                                                                                                                          | 0.05 (red) and 0.15<br>(infrared)                        | 0.2                                                                                                              |

 $\underline{\textcircled{O}}$  Springer

# Table 2 (continued)

| Authors                                       | Source of light                                                                                                                           |                                            | Wavelength (nm                                                                                                                 | )                                                          | Energy density<br>per diode (J/cm <sup>2</sup> )                                                                                                                   |                            | Energy per site (J)                                                                                                                                  |                          | Power density<br>per diode (W/cm <sup>2</sup> )                                                                                                              | Spot size (cm <sup>2</sup> )                                                                                                                                   |         |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Leal-Junior et al. [45]                       | red and 35<br>infrareds diodes)<br>Red and infrared LEDT<br>(cluster with 34<br>red and 35                                                | ſs                                         | 660 and 850                                                                                                                    |                                                            | 1.5 (red) and 4.5 (ir                                                                                                                                              | ıfrared)                   | from each infrared<br>laser)<br>41.7 (0.3 from each re<br>and 0.9 from each<br>infrared laser)                                                       | ad LED                   | 0.05 (red) and 0.15<br>(infrared)                                                                                                                            | 0.2                                                                                                                                                            |         |
| Maciel et al. [46]<br>Malta et al. [47]       | infrareds diodes)<br>Infrared LLLT (single c<br>Red and infrared LED1                                                                     | liode)<br>Îs                               | 830<br>Cluster of 104 di<br>(56 diodes of<br>nm and 48 di<br>of 850 nm)                                                        | iodes<br>660<br>iodes                                      | 5.68<br>1.5 J/cm <sup>2</sup> (red) and<br>J/cm <sup>2</sup> (infrared)                                                                                            | 4.5                        | 11<br>60 J at each point (0.,<br>from each red<br>LED and 0.9 J<br>from each infrared<br>LED)                                                        | 3 J                      | 0.25<br>0.05 (660 nm) and<br>0.15 (850 nm)                                                                                                                   | 0.12<br>69 cm <sup>2</sup> (cluster) 0<br>per diode                                                                                                            | .2      |
| Miranda et al. [20]                           | Super-pulsed LLLT,<br>Red LEDTs<br>and Infrared LEDTs                                                                                     | 5                                          | Cluster of 12 did<br>(4 of 905 nm<br>875 nm and<br>of 640 nm)                                                                  | odes<br>1, 4 of<br>4                                       | 30 J: 0.16 (905 nm<br>3.80 (640 nm)<br>4.42 (875 nm) <sup>a</sup>                                                                                                  | )                          | 30 LED)                                                                                                                                              |                          | 0.00071(905 nm)<br>0.01666 (640 nm)<br>0.01944 (875 nm)                                                                                                      | 20 cm <sup>2</sup> (cluster):<br>- 0.44 cm <sup>2</sup> (905 n<br>- 0.9 cm <sup>2</sup> (875 nn<br>and 640 nm)                                                 | m)<br>1 |
| Pinto et al. [48]                             | Super-pulsed LLLT,<br>Red LEDTs and<br>Infrared LEDTs                                                                                     |                                            | Cluster of 12 dic<br>(4 of 905 nm<br>of 875 nm ar<br>of 640 nm)                                                                | odes<br>1, 4<br>nd 4                                       | 30 J: 0.16 (905 nm<br>3.80 (640 nm)<br>4.42 (875 nm)                                                                                                               | )                          | 30                                                                                                                                                   |                          | 0.00071(905 nm)<br>0.01666 (640 nm)<br>0.01944 (875 nm)                                                                                                      | 20 cm <sup>2</sup> (cluster):<br>- 0.44 cm <sup>2</sup> (905 n<br>- 0.9 cm <sup>2</sup> (875 nn<br>and 640 nm)                                                 | m)<br>1 |
| Reis et al. [49]                              | Infrared LLLT (cluster                                                                                                                    |                                            | 830                                                                                                                            |                                                            | 214.28                                                                                                                                                             |                            | 0.6                                                                                                                                                  |                          | 21.43                                                                                                                                                        | 0.0028                                                                                                                                                         |         |
| Rossato et al. [50]                           | with 6 diodes)<br>Large cluster probe<br>(33 diodes) vs.<br>Small cluster probe<br>(9 diodes) - Both<br>clusters have Laser<br>and LEDTs. |                                            | Large cluster (5<br>850 nm, 12 I<br>670 nm, 8 Ll<br>880 nm and<br>LEDTs 950 n<br>Small cluster (5<br>850 nm and<br>LEDTs 670 n | lasers<br>LEDTs<br>EDTs<br>8<br>um).<br>Lasers<br>4<br>um) | Large cluster<br>- 53.33(850 nm)<br>- 0.156 (670 nm)<br>- 0.625 (880 nm)<br>- 0.391 (950 nm)<br>Small cluster<br>- 93.33 (850 nm)<br>- 0.875 (670 nm) <sup>a</sup> |                            | Large cluster<br>30 (total)<br>- 3.2 (850 nm)<br>- 0.3 (670 nm)<br>- 0.8 (880 nm)<br>- 0.5 (950 nm)<br>Small cluster<br>30 (total)<br>- 5.6 (850 nm) |                          | Large cluster<br>- 1.666(850 nm)<br>- 0.0052 (670 nm)<br>- 0.01953 (880 nm)<br>- 0.01171 (950 nm)<br>Small cluster<br>- 1.666 (850 nm)<br>- 0.01562 (670 nm) | Large cluster:<br>30.2 (total)<br>- 0.06 (850 nm)<br>- 1.92 (670 nm)<br>- 1.28 (880 nm)<br>- 1.28 (950 nm)<br>Small cluster:<br>7.5 (total)<br>- 0.06 (850 nm) |         |
| Vanin et al. [51]                             | Infrared LLLT (cluster                                                                                                                    |                                            | 810                                                                                                                            |                                                            | 54.95, 164.84, 274.                                                                                                                                                | 73                         | - 0.56 (670 nm)<br>10, 30 or 50 (2, 6 or                                                                                                             |                          | 5.495                                                                                                                                                        | - 0.64 (670 nm)<br>0.18 (0.0364 each                                                                                                                           | diode)  |
| Vanin et al. [52]                             | Super-pulsed LLLT,<br>Red LEDTs and<br>Infrared LEDTs                                                                                     |                                            | Cluster of 12 dic<br>of 905 nm, 4<br>875 nm and<br>of 640 nm)                                                                  | odes (4<br>of<br>4                                         | 30 J: 0.16 (905 nm<br>3.80 (640 nm)<br>4.42 (875 nm)                                                                                                               | )                          | 30                                                                                                                                                   |                          | 0.00071(905 nm)<br>0.01666 (640 nm)<br>0.01944 (875 nm)                                                                                                      | 20 cm <sup>2</sup> (cluster):<br>- 0.44 cm <sup>2</sup> (905 n<br>- 0.9 cm <sup>2</sup> (875 nn<br>and 640 nm)                                                 | m)<br>1 |
| Vieira et al. [53]                            | Infrared LLLT<br>(cluster with six<br>diodes)                                                                                             |                                            | 808                                                                                                                            |                                                            | 214.28                                                                                                                                                             |                            | 3.6 (0.6 per diode)                                                                                                                                  |                          | 21.42                                                                                                                                                        | 0.0028                                                                                                                                                         |         |
| Vieira et al. [54]<br>Zagatto et al. [55]     | Infrared LLLT (single c<br>Infrared LLLT (single c                                                                                        | liode)<br>liode)                           | 808<br>810                                                                                                                     |                                                            | 1428.57<br>107.14                                                                                                                                                  |                            | 4<br>3                                                                                                                                               |                          | 35.71<br>3.57                                                                                                                                                | 0.0028<br>0.028                                                                                                                                                |         |
| Authors                                       | Treatment time per<br>point or site (s)                                                                                                   | Power<br>per dio                           | output<br>de (mW)                                                                                                              | Total<br>delive                                            | Energy<br>ered (J)                                                                                                                                                 | Numb<br>points             | er of treated<br>or sites                                                                                                                            | Muscl<br>treated         | e<br>I                                                                                                                                                       | Moment of application                                                                                                                                          |         |
| Almeida et al. [24]<br>Alves et al. [25]      | 100<br>20                                                                                                                                 | 50<br>100                                  |                                                                                                                                | 20<br>56 <sup>a</sup>                                      |                                                                                                                                                                    | 4<br>4 (3 ir               | n quadriceps and                                                                                                                                     | Biceps<br>Quadr          | s brachii<br>iceps and                                                                                                                                       | Before<br>Before                                                                                                                                               |         |
| Antonialli et al. [14]                        | 20 100<br>76, 228 or 381 - 0.3125 (905 nm)<br>- 17.5 (875 nm)<br>- 15 (640 nm)                                                            |                                            | 60, 180, or 300                                                                                                                |                                                            | 6                                                                                                                                                                  | 6 Qu                       |                                                                                                                                                      | iceps                    | Before                                                                                                                                                       |                                                                                                                                                                |         |
| Baroni et al. [26]                            | 30                                                                                                                                        | 200                                        |                                                                                                                                | 180                                                        |                                                                                                                                                                    | 6                          |                                                                                                                                                      | Quadriceps               |                                                                                                                                                              | Before                                                                                                                                                         |         |
| Baroni et al. [27]                            | 30                                                                                                                                        | 10 (red                                    | ) and 30 (infrared)                                                                                                            | 125.1                                                      |                                                                                                                                                                    | 3                          | 6 Q<br>3 Q                                                                                                                                           |                          | iceps                                                                                                                                                        | Before                                                                                                                                                         |         |
| Baroni et al. [66] <sup>b</sup>               | 30                                                                                                                                        | 200                                        |                                                                                                                                | 240                                                        |                                                                                                                                                                    | 8                          | Quad                                                                                                                                                 |                          | iceps                                                                                                                                                        | Before                                                                                                                                                         |         |
| Borges et al. [28]                            | 30                                                                                                                                        | 300                                        |                                                                                                                                | 36 <sup>a</sup>                                            |                                                                                                                                                                    | 4                          |                                                                                                                                                      | Biceps                   | s brachii                                                                                                                                                    | After                                                                                                                                                          |         |
| De Marchi et al. [29]                         | 30                                                                                                                                        | 200                                        |                                                                                                                                | 360 p                                                      | er lower limb                                                                                                                                                      | 12 site                    | es per lower limb                                                                                                                                    | Quadr<br>Hamst<br>Gastro | iceps (6 sites)<br>rings (4 sites)<br>conemius (2 sites)                                                                                                     | Before                                                                                                                                                         |         |
| De Marchi et al. [17]<br>De Paiva et al. [18] | 30<br>300                                                                                                                                 | 10 (red<br>- 1.25 )<br>- 15 (6<br>- 17.5 ) | (905 nm)<br>(905 nm)<br>(875 nm)                                                                                               | 41.7<br>236.2                                              | 2 per lower limb                                                                                                                                                   | 1<br>6 sites<br>not<br>lin | on the<br>ndominant lower<br>nb                                                                                                                      | Biceps<br>Quadr          | s brachii<br>iceps                                                                                                                                           | Before<br>After                                                                                                                                                |         |
| De Souza et al. [19]                          | 49                                                                                                                                        | 100                                        |                                                                                                                                | 25                                                         |                                                                                                                                                                    | 5                          |                                                                                                                                                      | Soleus                   |                                                                                                                                                              | Before                                                                                                                                                         |         |
| Denis et al. [30]                             | 30                                                                                                                                        | 10 (red                                    | ) and 15 (infrared)                                                                                                            | 103.8                                                      | per lower limb                                                                                                                                                     | 4 per                      | lower limb                                                                                                                                           | Quadr                    | iceps                                                                                                                                                        | After                                                                                                                                                          |         |
| Felismino et al. [31]                         | 10<br>10 s each site—70 s                                                                                                                 | 100<br>60                                  |                                                                                                                                | 4                                                          | per lower limb                                                                                                                                                     | 4<br>42 (to)               | tal 84)                                                                                                                                              | Biceps                   | s brachii                                                                                                                                                    | Between the sets<br>of exercise<br>After                                                                                                                       |         |
| - 511 and 51 of an [52]                       | per lower limb<br>(total 140 s)                                                                                                           | 50                                         |                                                                                                                                |                                                            |                                                                                                                                                                    | .2 (10                     |                                                                                                                                                      | Zuaul                    | Po                                                                                                                                                           |                                                                                                                                                                |         |
| Ferraresi et al. [56]                         | 20, 40, or 60                                                                                                                             | 32.5 (ii                                   | nfrared) and                                                                                                                   | 315, 6                                                     | 630 or 945                                                                                                                                                         | 3 sites                    | (bilaterally)                                                                                                                                        | Quadr                    | iceps, hamstrings                                                                                                                                            | Before                                                                                                                                                         |         |

Before or after

and triceps surae

Quadriceps

8

each lower limb

240 per lower limb

20 (red) each diode<sup>b</sup>

200

Fritsch et al. [33]

30

# Table 2 (continued)

| Authors                 | Treatment time per point or site (s)      | Power output<br>per diode (mW)                                                                                                         | Total Energy<br>delivered (J)                             | Number of treated points or sites       | Muscle<br>treated                                                                     | Moment of application                                                                            |
|-------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Gorgey et al. [34]      | 300 or 600                                | 500                                                                                                                                    | 3 or 7 (scanning mode-no total energy described)          | Scanning<br>mode (no defined<br>points) | Quadriceps                                                                            | Before (scanning mode)                                                                           |
| Hemmings et al. [35]    | 30, 60, and 120                           | 10 (red) and 30 (infrared)                                                                                                             | 250.2, 500.4, or 1000.8 <sup>a</sup>                      | 6                                       | Quadriceps                                                                            | Before                                                                                           |
| Higashi et al. [36]     | 70                                        | 100                                                                                                                                    | 56                                                        | 8                                       | Biceps brachii                                                                        | Before                                                                                           |
| Kelencz et al. [37]     | 9, 18 or 27                               | 116                                                                                                                                    | 8.352, 16.704, or 25.056                                  | 8                                       | Right masseter                                                                        | After                                                                                            |
| Leal-Junior et al. [38] | 100                                       | 50                                                                                                                                     | 20                                                        | 4                                       | Biceps brachii                                                                        | Before                                                                                           |
| Leal-Junior et al. [39] | 30 (both)                                 | 200/10 and 30                                                                                                                          | 12/83.4 each lower limb                                   | 2 per lower limb (total of 4)           | Quadriceps                                                                            | Before                                                                                           |
| Leal-Junior et al. [40] | 30                                        | 10 (red) and 30 (infrared)                                                                                                             | 41.7                                                      | 1 (with 69 diodes)                      | Biceps brachii                                                                        | Before                                                                                           |
| Leal-Junior et al. [41] | 30 or 40                                  | 100                                                                                                                                    | 15 or 20 per lower limb                                   | 5 per lower limb (total of 10)          | Quadriceps                                                                            | Before                                                                                           |
| Leal-Junior et al. [42] | 50                                        | 100                                                                                                                                    | 20                                                        | 4                                       | Biceps brachii                                                                        | Before                                                                                           |
| Leal-Junior et al. [43] | 30                                        | 200                                                                                                                                    | 60                                                        | 2 (cluster with 5 diodes)               | Biceps brachii                                                                        | Before                                                                                           |
| Leal-Junior et al. [44] | 30                                        | 10 (red) and 30 (infrared)                                                                                                             | 208.5 per lower limb                                      | 5 per lower limb (total of 10)          | Triceps surae, rectus<br>femoris and<br>hamstrings                                    | Before                                                                                           |
| Leal-Junior et al. [45] | 30                                        | 10 (red) and 30 (infrared)                                                                                                             | 83.4 per lower limb                                       | 2 per lower limb (total of 4)           | Quadriceps                                                                            | Before                                                                                           |
| Maciel et al. [46]      | 22                                        | 30                                                                                                                                     | 220 <sup>a</sup>                                          | 20                                      | Triceps surae                                                                         | After                                                                                            |
| Malta et al. [47]       | 30                                        | 10 mW (660 nm) and<br>30 mW (850 nm)                                                                                                   | 300 J per lower limb                                      | 5 in each lower limb                    | Quadriceps (two<br>sites), Biceps<br>femoris (two sites),<br>Triceps surae (one site) | Before                                                                                           |
| Miranda et al. [20]     | 228                                       | - 0.3125 (905 nm)<br>- 17.5 (875 nm)<br>- 15 (640 nm)                                                                                  | 510 per lower limb                                        | 17 sites on each lower limb             | Quadriceps, hamstring,<br>and gastrocnemius<br>muscles                                | Before                                                                                           |
| Pinto et al. [48]       | 228                                       | - 0.3125 (905 nm)<br>- 17.5 (875 nm)<br>- 15 (640 nm)                                                                                  | 510 per lower limb                                        | 17 sites on each lower limb             | Quadriceps, hamstring,<br>and gastrocnemius<br>muscles                                | Before                                                                                           |
| Reis et al. [49]        | 10 per site (total<br>70s per lower limb) | 60                                                                                                                                     | 25.2 per lower limb                                       | 7 per lower limb                        | Quadriceps                                                                            | After                                                                                            |
| Rossato et al. [50]     | Large cluster: 32<br>Small cluster: 56    | Large cluster<br>- 100 (850 nm)<br>- 10 (670 nm)<br>- 25 (880 nm)<br>- 15 (950 nm)<br>Small cluster<br>- 100 (850 nm)<br>- 10 (670 nm) | 60                                                        | 2                                       | Biceps brachii                                                                        | Before                                                                                           |
| Vanin et al. [51]       | 60, 180 or 300                            | 200 per diode (total<br>of 1000)                                                                                                       | 60, 180 or 300                                            | 6 sites                                 | Quadriceps                                                                            | Before                                                                                           |
| Vanin et al. [52]       | 228                                       | - 0.3125 (905 nm)<br>- 17.5 (875 nm)<br>- 15 (640 nm)                                                                                  | 180 per lower limb                                        | 6 sites on each<br>lower limb           | Quadriceps                                                                            | Before and/or after                                                                              |
| Vieira et al. [53]      | 10 per site (total<br>50s per lower limb) | 60                                                                                                                                     | 18 per lower limb                                         | 5                                       | Quadriceps                                                                            | After                                                                                            |
| Vieira et al. [54]      | 40                                        | 100                                                                                                                                    | 20 each time<br>point—applied three<br>times (total 60 J) | 5                                       | Quadriceps                                                                            | Between sets of exercise<br>and after the last series<br>(three applications in the<br>same day) |
| Zagatto et al. [55]     | 30                                        | 100                                                                                                                                    | 24 per lower limb                                         | 8 each lower limb                       | Adductor magnus<br>and adductor longus                                                | After                                                                                            |

LLLT low-level laser therapy, LEDT light-emitting diode therapy

<sup>a</sup> Data calculated

<sup>b</sup> Authors cited that the device was the same of previous study

lactate, creatine kinase [CK], and C-reactive protein [CRP]), improving training response (peak torque, total work, and 1-RM test), and reducing fatigue signals (such as number of repetitions and time to exhaustion).

# Data syntheses and analysis

A meta-analysis was performed using RevMan review management software (version 5.3) to summarize the treatment effect of photobiomodulation therapy on improving muscular

Deringer

performance and reducing muscular fatigue. Meta-analysis was only performed for those studies that compared photobiomodulation therapy to a placebo group due to the large amount of comparisons. Consequently, four studies were omitted from the meta-analysis [32, 34, 53, 66], but we presented these data descriptively.

Meta-analysis on continuous outcomes was conducted using means and standard deviations (SDs) from each of the eligible trials. Data were presented by standardized mean difference (SMD) when the data were presented in different outcome

### Fig. 1 Flowchart



measures and as mean difference (MD) if the studies used the same outcome measure [22]. Pooled effects were calculated using fixed effects to estimate the effect [22]. The withingroup variation was assumed to be known. Heterogeneity was analyzed using Higgins  $I^2$  values.

When there was more than one comparison from a single group, the number of participants in the common arm was divided by the number of comparisons [22]. If more than one time point was found in the study, all were shown in tables, but only the closest time point of the photobiomodulation therapy application was chosen for the analysis. Furthermore, if more than one photobiomodulation therapy dosage was tested in the experiment, the dosage with the largest effect was chosen for the meta-analysis.

# Results

We included 39 randomized controlled trials (n = 861 participants) (Fig. 1). The study sample sizes ranged from 5 to 60 participants (median, 22.07 [13.82]). These studies were published between 2008 and 2017. Detailed description of the study characteristics can be found in Table 1. Twenty-one of the included studies performed crossover designs, and 18 were parallel trials (Table 1). The authors of 16 studies were contacted by e-mail for additional information, 11 authors (68.75%) provided the required data [28, 30, 31, 38, 43, 48–51, 53, 55], with 1 (6.25%) answering that they did not have the information anymore [34], and 4 authors (31.25%) did not answer [25, 32, 36, 56].





# Risk of bias assessment

In general, trials showed a high risk of bias. The risk of bias analysis demonstrated a lack of information for most studies regarding allocation concealment (90%; n = 35), selective reporting of the outcomes (46%, n = 18), and lack of blinding (33%, n = 13). The details of the risk of bias assessment of all included studies are summarized in Figs. 2 and 3.

### Characteristics of the exercise protocols

Authors proposed exercises involving concentric [17, 19, 27, 54] or eccentric isokinetic contractions performed in the isokinetic dynamometer [14, 18, 26, 28, 35, 51, 66], as well as isometric contractions [24, 37, 46, 50]. Some studies proposed cardiopulmonary exercises using cycloergometer [25, 53], treadmill [20, 29, 47], or Wingate test to induce fatigue [30, 39, 41, 44, 45].

Furthermore, exercises encompassing dynamic concentric contractions with weights or workload machines were proposed, generally involving the quadriceps or biceps brachii muscles [31, 36, 38, 40, 42, 43, 49, 52]. Authors also used plyometric exercises [33, 46], sport-specific test [48, 55], or matches [56], and only one used an electric stimulation protocol [34].

# Variables

The variables extracted from the articles were time until exhaustion and number of repetitions (Table 3), blood lactate (Table 4), CK (Table 5), CRP (Table 6), lactate dehydrogenase (LDH) (Table 7), concentric and isometric peak torques (Table 8), total work and 1-RM test (Table 9), peak and mean peak power (Table 10), and maximal and mean force (Table 11). Meta-analyses were possible for four variables: time to exhaustion, number of repetitions, blood lactate, and isometric peak torque.

Analysis of the outcomes related to time until exhaustion was possible for 12 studies. Based on these trials, low-quality evidence (downgraded due to risk of bias and imprecision) showed that photobiomodulation therapy can increase the time until exhaustion during exercise with a mean difference of 3.55 s (n = 348; 95% CI, 1.09–6.00;  $I^2 = 0\%$ ; p = 0.005) in favor of photobiomodulation therapy (Fig. 4). For the number of repetitions, eight trials showed a significant effect in favor of photobiomodulation therapy, and low-quality evidence (downgraded due to inconsistency and imprecision) showed that photobiomodulation therapy increases the number of repetitions of an exercise compared with placebo (n = 219; MD, 4.88; 95% CI, 0.14–9.62;  $I^2 = 59\%$ ; p = 0.04) (Fig. 4).

In the meta-analysis for isometric peak torque, maximal voluntary test (MVC) test, very low-quality evidence (downgraded due to risk of bias, inconsistency, and imprecision) showed that a



Fig. 3 Risk of bias summary

| Authors                          | Time to exhaus                                    | stion (s)                                                               |                                              |                                                              |                                                                          |                                       | Number of re                                                                                              | petitions                         |                                                     |                |                              |
|----------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|----------------|------------------------------|
| Alves et al. [25]                | LLLT<br>648 ± 95                                  |                                                                         |                                              | $\begin{array}{c} PL \\ 648 \pm 87 \end{array}$              |                                                                          |                                       |                                                                                                           |                                   |                                                     |                |                              |
| De Marchi et al. [29]            | p > 0.03<br>LLLT<br>711.41 ± 87.47<br>*: - 0.0467 |                                                                         |                                              | PL<br>697.27 ± 83.62                                         |                                                                          |                                       |                                                                                                           |                                   |                                                     |                |                              |
| Hemmings et al. [35]             | $d_{10} = 0.0401$                                 |                                                                         |                                              |                                                              |                                                                          |                                       | PL<br>48.6<br>+ 37                                                                                        | 30s LED<br>$51 \pm 35.2$          | $60s \text{ LED} 61.9 \pm 34.7*$                    |                | 120 s LED<br>61.8<br>+ 38 7* |
| Higashi et al. [36]              |                                                   |                                                                         |                                              |                                                              |                                                                          |                                       | *Significance<br>(p = 0.023  i)<br>LLLT<br>25.1 ± 9.89                                                    | compared to $p$ and $p = 0.004$ , | lacebo<br>respectively).<br>PL<br>$22.6 \pm 7.58$   |                | 1                            |
| Kelencz et al. [37]              | Treated 1.044<br>J (LED)<br>$38.0 \pm 10.8$       | $\begin{array}{c} PL \ 1.044 \\ J \ (LED) \\ 38.0 \pm 10.6 \end{array}$ | Treated 2.088<br>J (LED)<br>$42.2 \pm 14.7*$ | PL 2.088 J (LED)<br>33.4 ± 12.4                              | $\begin{array}{c} Treated \ 3.132\\ J \ (LED)\\ 26.8\pm10.4 \end{array}$ | PL 3.132 J<br>(LED)<br>$18.3 \pm 7.9$ | <i>p</i> = 0.342                                                                                          |                                   |                                                     |                |                              |
| Leal-Junior et al. [38]          | p > 0.05<br>LLLT<br>53.8 (CI 46.2–6               | 1.4)                                                                    | *c0.0 > d                                    | <i>p</i> > 0.05<br>PL<br>41.1 (CI 33.6–48.7)                 |                                                                          |                                       | $\begin{array}{c} \text{LLLT} \\ \text{29.33} \pm 7.9 \\ \text{29.33} \pm 7.9 \\ \text{2000} \end{array}$ |                                   | PL<br>19.17 ± 7.1                                   |                |                              |
| Leal-Junior et al. [40]          | p = 0.0022*<br>LEDT<br>$47.37 \pm 11.50$          |                                                                         |                                              | PL<br>42.46 ± 13.81                                          |                                                                          |                                       | p = 0.0001 *<br>LEDT<br>38.6 ± 9.03                                                                       |                                   | PL<br>34.2 ± 8.6                                    |                |                              |
| Leal-Junior et al. [42]          | p = 0.036*<br>LLLT<br>$37.15 \pm 6.45$            |                                                                         |                                              | $\begin{array}{l} \mathrm{PL} \\ 34.34 \pm 6.77 \end{array}$ |                                                                          |                                       | $p = 0.021^{*}$<br>LLLT<br>$30.10 \pm 8.08$                                                               |                                   | $\begin{array}{c} PL \\ 25.60 \pm 6.15 \end{array}$ |                |                              |
| Leal-Junior et al. [43]          | p = 0.096<br>LLLT<br>$41.3 \pm 5.1$               |                                                                         |                                              | $\begin{array}{c} PL\\ 38.2\pm3.2\end{array}$                |                                                                          |                                       | $p = 0.042^{*}$<br>LLLT<br>$39.6 \pm 4.3$                                                                 |                                   | $\begin{array}{l} PL \\ 34.6 \pm 5.6 \end{array}$   |                |                              |
| Maciel et al. [46]               | p = 0.034<br>Control<br>$28.6 \pm 16.3$           | $\begin{array}{c} PL \\ 25.4 \pm 19.7 \end{array}$                      |                                              |                                                              | $\begin{array}{c} \text{LLLT} \\ 34.5 \pm 20.6 \end{array}$              |                                       | -1c0.0 = d                                                                                                |                                   |                                                     |                |                              |
| Malta et al., [47]               | p > 0.05<br>LEDT<br>154.6 ± 36                    |                                                                         |                                              | PL<br>155.5 ± 37                                             |                                                                          |                                       |                                                                                                           |                                   |                                                     |                |                              |
| Miranda et al. [20]              | p = 0.80<br>Phototherapy<br>780.2 ± 91            |                                                                         |                                              | PL<br>742.1 ± 94                                             |                                                                          |                                       |                                                                                                           |                                   |                                                     |                |                              |
| Reis et al. [49]                 | <i>p</i> < 0.001°                                 | PL                                                                      | Prefatigue laser                             | Postfatigue laser                                            | b                                                                        |                                       | [                                                                                                         | PL                                | Prefatigue                                          | Postfatigue    | d                            |
|                                  | Day 1                                             | $41.1\pm14.7$                                                           | $36.0\pm9.2$                                 | $34.2 \pm 7.9$                                               | 0.3996                                                                   |                                       | Day 1                                                                                                     | $39.9 \\ \pm 17.1$                | $131.0 \pm 11.2$                                    | $28.7 \pm 8.9$ | 0.1704                       |
|                                  | Day8                                              | $40.4\pm14.8$                                                           | $37.4 \pm 9.6$                               | $37.8\pm10.6$                                                | 0.8424                                                                   |                                       | Day8                                                                                                      | $^{\pm 1/.1}_{+ 18.7}$            | 37.8<br>+ 13.1                                      | $41.6\pm17.4$  | 0.8965                       |
| Rossato et al. [50] <sup>a</sup> | Large cluster $48.54 \pm 8.99$                    | Large cluster<br>placebo<br>43.46                                       | Small cluster $49.67 \pm 13.69$              |                                                              | Small cluster<br>placebo<br>44.13 ± 12.73                                |                                       |                                                                                                           | 1                                 | 1                                                   |                |                              |
|                                  | p = 0.031, p = 0.031                              | $\pm$ 12.45<br>).038, observed po                                       | wer = $0.83$ -comparis                       | on with respective pla                                       | cebo treatments.                                                         |                                       |                                                                                                           |                                   |                                                     |                |                              |
| Vieira et al. [54]               |                                                   |                                                                         |                                              | (7                                                           |                                                                          |                                       | $\begin{array}{l} \text{LLLT} \\ 120.7 \pm 41.8 \\ *p < 0.05 \end{array}$                                 |                                   | PL<br>62.1 ± 13.5                                   |                |                              |
| LLLT low-level laser ti          | herapy, LEDT lig                                  | tht-emitting diode                                                      | therapy, PL placeb                           | 0                                                            |                                                                          |                                       |                                                                                                           |                                   |                                                     |                |                              |

 Table 3
 Time until exhaustion (s) and number of repetitions

 $\underline{\textcircled{O}}$  Springer

\*Statistically significant

<sup>a</sup> Unpublished data provided by author

#### Table 4 Blood lactate

Authors Blood lactate (mmol/L)

| Autions                        | Dioou lacta           |                 | )                    |                      |                 |                       |                 |                 |                  |                  |
|--------------------------------|-----------------------|-----------------|----------------------|----------------------|-----------------|-----------------------|-----------------|-----------------|------------------|------------------|
| Alves et al. [25]              | PL 77 + 27            |                 |                      |                      |                 |                       |                 |                 | LLLT             |                  |
|                                | $1.1 \pm 2.1$         |                 |                      |                      |                 |                       |                 |                 | $1.2 \pm 2.3$    |                  |
| Denis et al [30] <sup>a</sup>  | <i>p</i> > 0.05<br>PI |                 |                      |                      |                 |                       |                 |                 | I FDT            |                  |
| Denis et al. [50]              | Baseline              |                 | Post-vovo test       |                      | Post 3rd min    |                       | Post 9th mi     | n               | Post15th min     | Baseline         |
|                                | $1.24 \pm 0.69$       |                 | 1452 + 216           |                      | 1327 + 373      | ,                     | 10.81 + 3.8     | 4               | 877 + 446        | $1.38 \pm 0.62$  |
|                                | $n \ge 0.05$          |                 | 11.52 ± 2.10         |                      | 15.27 ± 5.75    |                       | 10.01 ± 5.0     |                 | n > 0.05         | 1.50 ± 0.02      |
| Hemmings et al. [35]           | PL 0.05               |                 |                      |                      | 30s LED         |                       |                 |                 | p > 0.05         | 60s LED          |
|                                | $1.14 \pm 1.69$       |                 |                      |                      | $1.18 \pm 1.30$ |                       |                 |                 |                  | $1.22 \pm 1.71$  |
|                                | p > 0.05              |                 |                      |                      |                 |                       |                 |                 |                  |                  |
| Higashi et al. [36]            | Values not de         | scribed in the  | text (p values)      |                      |                 |                       |                 |                 |                  |                  |
| Leal-Junior et al. [38]        | Before LLLT           |                 | 4                    |                      | Before PL       |                       |                 |                 | After LLLT       |                  |
|                                | $2.38\pm0.27$         |                 |                      |                      | $2.4\pm0.31$    |                       |                 |                 | $3.92\pm0.50$    |                  |
|                                | p > 0.05              |                 |                      |                      |                 |                       |                 |                 |                  |                  |
| Leal-Junior et al. [39]        | Before LEDT           |                 | Before LLLT          | Before PL            |                 | LEDT 3'               | LLLT 3'         |                 | PL 3'            | LEDT 10'         |
|                                | $1.55 \pm 0.54$       |                 | $1.54 \pm 0.38$      | $1.66 \pm 0.42$      |                 | $10.03 \pm 1.74$      | $9.94 \pm 1.75$ |                 | $10.04 \pm 2.59$ | $10.84 \pm 2.94$ |
|                                | p > 0.05              |                 |                      |                      |                 | p > 0.05              |                 |                 | p > 0.05         |                  |
| Leal-Junior et al. [40]        | Before LEDT           |                 |                      |                      |                 | Before PL             |                 |                 | After LEDT       |                  |
|                                | $3.40 \pm 1.07$       |                 |                      |                      |                 | $3.70 \pm 1.25$       |                 |                 | $11.60 \pm 3.99$ |                  |
| x 1 x 1 . 1 . 1 . 1 . 1        | p > 0.05              |                 | D.C. DI              |                      |                 |                       |                 |                 | p = 0.042        |                  |
| Leal-Junior et al. [41]        | Before LLLI           |                 | Before PL            |                      |                 | LLLT 3'               |                 |                 | PL 3'            |                  |
|                                | $2.52 \pm 0.52$       |                 | $2.24 \pm 0.33$      |                      |                 | $13.27 \pm 2.11$      |                 |                 | $13.66 \pm 2.89$ |                  |
| Lool Junior at al [42]         | p > 0.05              |                 |                      |                      |                 | p > 0.05<br>Poforo PI |                 |                 | p > 0.05         | After LLLT       |
| Leai-Juilloi et al. [42]       | $231 \pm 0.36$        |                 |                      |                      |                 | $216 \pm 0.37$        |                 |                 |                  | $5.03 \pm 0.00$  |
|                                | n = 0.200             |                 |                      |                      |                 | 2.10 ± 0.57           |                 |                 |                  | $5.95 \pm 0.90$  |
| Leal-Junior et al [43]         | Before LLLT           |                 | Before PL            |                      | LUT 5'          | PL 5'                 | LLLT 10'        |                 | PL 10'           |                  |
| Lear sumor et un [15]          | $1.30 \pm 0.10$       |                 | $1.43 \pm 0.25$      |                      | $2.20 \pm 0.54$ | $5.32 \pm 3.19$       | $4.56 \pm 1.05$ |                 | $4.84 \pm 2.26$  |                  |
|                                | p > 0.05              |                 |                      |                      | $p < 0.01^*$    |                       | p > 0.05        |                 |                  |                  |
| Leal-Junior et al. [44]        | PL                    |                 |                      |                      | r               | LEDT                  | I · · · · ·     |                 | Cold water imp   | mersion therapy  |
|                                | Pre                   |                 | Post                 |                      |                 | Pre                   | Post            |                 | Pre              | 15               |
|                                | $11 \pm 2.61$         |                 | $9.17 \pm 5.04$      |                      |                 | $16 \pm 3.22$         | $10.50 \pm 2.4$ | 3*              | $13.83 \pm 1.94$ |                  |
|                                | *p < 0.05             |                 |                      |                      |                 |                       |                 |                 |                  |                  |
| Pinto et al. [48] <sup>a</sup> | PL                    |                 |                      |                      |                 |                       |                 |                 |                  | Phototherapy     |
|                                | Baseline              |                 | 3 min                | 10 min               |                 | 30 min                |                 | 60 min          |                  | Baseline         |
|                                | $1.820\pm0.6$         |                 | $15.10 \pm 2.74$     | $12.91 \pm 3.15$     |                 | $7.990 \pm 2.47$      |                 | $3.310 \pm 1.0$ | 2                | $1.940\pm0.72$   |
|                                | p > 0.05              |                 |                      |                      |                 |                       |                 |                 |                  | p > 0.05         |
| Reis et al. [49] <sup>a</sup>  | PL                    |                 |                      |                      |                 |                       | Prefatigue 1    | aser            |                  |                  |
|                                | 5 min                 |                 | 10 min               |                      | 15 min          |                       | 5 min           |                 | 10 min           |                  |
|                                | Day 1                 | Day 8           | Day 1                | Day 8                | Day 1           | Day 8                 | Day 1           | Day 8           | Day 1            | Day 8            |
|                                | $4.53 \pm 1.69$       | $4.61 \pm 1.85$ | 3.36 ± 1.18          | $3.05 \pm 1.02$      | $2.76 \pm 0.78$ | $2.28 \pm 0.55$       | 4.7 ± 2.69      | $6.8 \pm 2.88$  | $4.2 \pm 1.87$   | $4.7 \pm 2.24$   |
|                                | *ANOVA, p             | = 0.0037: plac  | ebo versus postfatig | gue laser: $p < 0.0$ | 1, **prefatigue | laser versus pos      | ttatigue laser: | p < 0.05.       |                  |                  |
|                                |                       |                 |                      |                      |                 |                       |                 |                 |                  |                  |
| Authors                        | Place 1               | aatata (mma     | J/T )                |                      |                 |                       |                 |                 |                  |                  |
| Autiors                        | BIOOD IS              | actate (mmo     | u/L)                 |                      |                 |                       |                 |                 |                  |                  |

# Blood lactate (mmol/L)

| LLLT             |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $7.2 \pm 2.3$    |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LEDI             | <b>D</b> ( ) ( )                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D (04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D (154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Baseline         | Post-yoyo test                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Post 3rd min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Post 9th min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post15th min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $1.38 \pm 0.62$  | $13.75 \pm 2.91$                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $12.94 \pm 3.53$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $11.16 \pm 3.80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $9.7 \pm 4.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 60s LED          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120 s LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $1.22 \pm 1.71$  |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.00 \pm 1.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Values not descr | ibed in the text (p va                                                                                                                                                                                                                                                                                                                                                                        | ulues)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| After LLLT       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | After PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $3.92\pm0.50$    |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.65 \pm 0.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LEDT 10'         | LLLT 10'                                                                                                                                                                                                                                                                                                                                                                                      | PL 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEDT 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LLLT 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $10.84 \pm 2.94$ | $10.35 \pm 2.67$                                                                                                                                                                                                                                                                                                                                                                              | $11.95 \pm 1.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $10.15 \pm 2.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $10.47 \pm 2.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $11.04 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p > 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| After LEDT       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | After PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $11.60 \pm 3.99$ |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $15.20 \pm 3.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p = 0.042        |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LLLT 10'         |                                                                                                                                                                                                                                                                                                                                                                                               | PL 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LLLT 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PL 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $13.15 \pm 2.17$ |                                                                                                                                                                                                                                                                                                                                                                                               | $13.28 \pm 1.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $11.07 \pm 2.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $12.76 \pm 1.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| p > 0.05         |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p = 0.01*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| After LLLT       |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | After PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $5.93 \pm 0.90$  |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $610\pm110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| n = 0.200        |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PL 10'           | LLLT 15'                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PL 15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LLLT 20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL 20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | LLLT<br>7.2 $\pm$ 2.3<br>p > 0.05<br>LEDT<br>Baseline<br>1.38 $\pm$ 0.62<br>p > 0.05<br>60s LED<br>1.22 $\pm$ 1.71<br>p > 0.05<br>Values not descr<br>After LLLT<br>3.92 $\pm$ 0.50<br>p > 0.05<br>LEDT 10'<br>10.84 $\pm$ 2.94<br>p > 0.05<br>After LEDT<br>11.60 $\pm$ 3.99<br>p = 0.042<br>LLLT 10'<br>13.15 $\pm$ 2.17<br>p > 0.05<br>After LLT<br>5.93 $\pm$ 0.90<br>p = 0.200<br>PL 10' | LLLT<br>7.2 $\pm$ 2.3<br>p > 0.05<br>LEDT<br>Baseline Post-yoyo test<br>1.38 $\pm$ 0.62 13.75 $\pm$ 2.91<br>p > 0.05<br>60s LED<br>1.22 $\pm$ 1.71<br>p > 0.05<br>Values not described in the text ( $p$ va<br>After LLLT<br>3.92 $\pm$ 0.50<br>p > 0.05<br>LEDT 10' LLLT 10'<br>10.84 $\pm$ 2.94 10.35 $\pm$ 2.67<br>p > 0.05<br>After LEDT<br>11.60 $\pm$ 3.99<br>p = 0.042<br>LLLT 10'<br>13.15 $\pm$ 2.17<br>p > 0.05<br>After LLLT<br>5.93 $\pm$ 0.90<br>p = 0.200<br>PL 10' LLLT 15' | LLLT<br>7.2 $\pm$ 2.3<br>p > 0.05<br>LEDT<br>Baseline Post-yoyo test<br>1.38 $\pm$ 0.62 13.75 $\pm$ 2.91<br>p > 0.05<br>60s LED<br>1.22 $\pm$ 1.71<br>p > 0.05<br>Values not described in the text ( $p$ values)<br>After LLLT<br>3.92 $\pm$ 0.50<br>p > 0.05<br>LEDT 10' LLLT 10' PL 10'<br>10.84 $\pm$ 2.94 10.35 $\pm$ 2.67 11.95 $\pm$ 1.89<br>p > 0.05<br>After LEDT<br>11.60 $\pm$ 3.99<br>p = 0.042<br>LLLT 10' PL 10'<br>13.15 $\pm$ 2.17 13.28 $\pm$ 1.42<br>p > 0.05<br>After LLLT<br>5.93 $\pm$ 0.90<br>p = 0.200<br>PL 10' LLT 15' | LLLT       7.2 ± 2.3 $p > 0.05$ LEDT         Baseline       Post-yoyo test       Post 3rd min, $1.38 \pm 0.62$ $13.75 \pm 2.91$ $12.94 \pm 3.53$ $p > 0.05$ 60s LED       120 s LED $1.22 \pm 1.71$ $1.00 \pm 1.36$ $p > 0.05$ Values not described in the text (p values)         After LLLT $3.92 \pm 0.50$ $p > 0.05$ LEDT 10'         LEDT 10'       LLLT 10' $1.35 \pm 2.67$ $11.95 \pm 1.89$ $p > 0.05$ $p > 0.05$ After LEDT       After PL $11.60 \pm 3.99$ $15.20 \pm 3.21$ $p = 0.042$ LLLT 10'       PL 10'         LLLT 10'       PL 10' $13.15 \pm 2.17$ $13.28 \pm 1.42$ $p > 0.05$ After PL $5.93 \pm 0.90$ $6.10 \pm 1.10$ $p = 0.200$ PL 10' | LLLT       7.2 $\pm$ 2.3       p > 0.05         LEDT       Baseline       Post-yoyo test       Post 3rd min,         1.38 $\pm$ 0.62       13.75 $\pm$ 2.91       12.94 $\pm$ 3.53       p > 0.05         60s LED       120 s LED       1.22 $\pm$ 1.71       1.00 $\pm$ 1.36 $p > 0.05$ Values not described in the text (p values)       After PL         After LLT       After PL       3.65 $\pm$ 0.51 $3.92 \pm 0.50$ $3.65 \pm 0.51$ $p > 0.05$ LEDT 10'       LLLT 10'       PL 10'       LEDT 15'         10.84 $\pm$ 2.94       10.35 $\pm$ 2.67       11.95 $\pm$ 1.89       10.15 $\pm$ 2.05 $p > 0.05$ $p > 0.05$ $p > 0.05$ $p > 0.05$ After LEDT       After PL       11.60 $\pm$ 3.99       15.20 $\pm$ 3.21 $p = 0.042$ LLLT 10'       PL 10'       LLLT 15'         LLLT 10'       PL 10'       LLLT 15'       11.07 $\pm$ 2.14 $p > 0.05$ $p = 0.01^*$ After PL       5.93 $\pm$ 0.90 $p = 0.200$ $p$ $0.200$ $p$ $0.200$ | LLLT       7.2 $\pm$ 2.3       p > 0.05         LEDT       Baseline       Post-yoyo test       Post 3rd min,       Post 9th min         1.38 $\pm$ 0.62       13.75 $\pm$ 2.91       12.94 $\pm$ 3.53       11.16 $\pm$ 3.80 $p > 0.05$ 60s LED       120 s LED       1.22 $\pm$ 1.71       1.00 $\pm$ 1.36 $p > 0.05$ Values not described in the text (p values)       After PL       3.65 $\pm$ 0.51 $p > 0.05$ Values not described in the text (p values)       After PL $3.92 \pm 0.50$ $3.65 \pm 0.51$ $p > 0.05$ $Values not described in the text (p values)$ After PL $1.03 \pm 2.05$ $p > 0.05$ LEDT 10'       LLLT 15' $10.47 \pm 2.22$ $p > 0.05$ $p > 0.05$ $p > 0.05$ $10.47 \pm 2.22$ $p > 0.05$ $p > 0.05$ $p = 0.042$ $11.07 \pm 2.14$ $LLT 10'$ PL 10'       LLLT 15' $11.07 \pm 2.14$ $p > 0.05$ $p = 0.01^*$ After PL $5.93 \pm 0.90$ $6.10 \pm 1.10$ $p = 0.200$ PL 10'       LLLT 15' $10.17 \pm 2.14$ $p = 0.200$ |

 $\underline{\textcircled{O}}$  Springer

Table 4 (continued)

### 195

| Authors                        | Blood lactate               | e (mmol/L)                  |                          |                   |                     |                             |                  |                 |
|--------------------------------|-----------------------------|-----------------------------|--------------------------|-------------------|---------------------|-----------------------------|------------------|-----------------|
| Leal-Junior et al. [43]        | $4.84 \pm 2.26$<br>p > 0.05 | $5.02 \pm 3.06$<br>p > 0.05 |                          | $4.67 \pm 1.74$   |                     | $3.94 \pm 0.99$<br>p > 0.05 | $3.57\pm0.54$    |                 |
| Leal-Junior et al. [44]        | Cold water imm              | nersion therapy             |                          |                   |                     |                             |                  |                 |
|                                | Pre                         |                             |                          | Post              |                     |                             |                  |                 |
|                                | $13.83 \pm 1.94$            |                             |                          | $11.67 \pm 1.97$  |                     |                             |                  |                 |
|                                | *p < 0.05                   |                             |                          |                   |                     |                             |                  |                 |
| Pinto et al. [48] <sup>a</sup> | Phototherapy                |                             |                          |                   |                     |                             |                  |                 |
|                                | 3 min                       |                             | 10 min                   |                   | 30 min              |                             | 60 min           |                 |
|                                | $14.11 \pm 3.53$            |                             | $11.95 \pm 3.74$         |                   | $6.070 \pm 2.46$    |                             | $2.370 \pm 0.58$ |                 |
|                                | p > 0.05                    |                             |                          |                   |                     |                             |                  |                 |
| Reis et al. [49] <sup>a</sup>  | Prefatigue laser            |                             | Postfatigue laser        |                   |                     |                             |                  |                 |
|                                | 15 min                      |                             | 5 min                    |                   | 10 min              |                             | 15 min           |                 |
|                                | Day 1                       | Day 8                       | Day 1                    | Day 8             | Day 1               | Day 8                       | Day 1            | Day 8           |
|                                | $3.3 \pm 1.38$              | $3.5 \pm 1.54$              | $4.42 \pm 2.59$          | $4.18 \pm 1.98$   | $2.7 \pm 1.62$      | $3.21 \pm 1.37$             | $2.02 \pm 0.61$  | 1.92 ± 0.65* ** |
|                                | *ANOVA, $p = 0$             | 0.0037: placebo ver         | sus postfatigue laser: p | < 0.01, **prefati | gue laser versus po | stfatigue laser: p <        | : 0.05.          |                 |

LLLT low-level laser therapy, LEDT light-emitting diode therapy, PL placebo

\*Statistically significant

<sup>a</sup> Unpublished data provided by author

significant difference was found between photobiomodulation therapy and placebo with some effect in favor of photobiomodulation therapy (n = 286; SMD = 0.57 Nm; 95% CI, 0.17–0.97;  $l^2 = 59\%$ ; p = 0.006), based on ten trials (Fig. 5). For blood lactate levels measured immediately or until 5 min after the exercise, based on moderate-quality evidence (downgraded due to imprecision), 12 trials demonstrated a significant effect in favor of photobiomodulation therapy compared with placebo group (n = 337; MD 0.14 mmol/L; 95% CI, - 0.49to 0.20;  $l^2 = 16\%$ ; p = 0.41) (Fig. 5).

Based on 15 trials, very low-quality evidence (downgraded due to inconsistency, indirectness, and imprecision) showed that photobiomodulation therapy modulates CK activity after exercise compared with placebo, with a small effect in favor of photobiomodulation therapy. Due to the high level of heterogeneity, we did not combine the results for the meta-analysis ( $I^2 = 75\%$ ), but we reported these descriptively.

For the variables of LDH levels, concentric peak torque, total work, 1-RM, peak power, mean peak power, maximal force, and mean force, performing meta-analysis was not possible because of the low amount of studies that address each one, but we evaluated the quality of evidence for each outcome, and the results are shown in Table 12. Due to the lack of studies and methodological variability, the quality of evidence for these variables were defined as very low, most of them being downgraded due to inconsistency, indirectness, and imprecision. The quality of evidence for each variable is summarized in Table 12.

### Effectiveness and moment of application

With regard to the moment of application, 26 (67%) studies applied the photobiomodulation therapy before the exercise, 9 (23%) studies after the exercise, 2 (5%) studies between the sets of exercise, 1 before and/or after exercise, and 1 study before or after the exercise (Table 2).

Of the 39 studies included in the review, 32 showed positive results in at least one of the variables related to performance when photobiomodulation therapy was used in association with exercise. These positive results were achieved mainly when photobiomodulation therapy was applied before the exercise (n = 24), but also when applied after (n = 5), either before or after (n = 1), and between the sets of exercise (n = 2). No effect in favor to photobiomodulation therapy was observed in seven studies; three studies applied the photobiomodulation therapy after, and four studies applied the photobiomodulation therapy before the exercise, one of them in scanning mode.

### Photobiomodulation therapy parameters

LLLT was the source of light most used in the studies (n = 22). LEDT was used in 11 studies, most of them combining red and infrared wavelengths (n = 9). Moreover, the combination of sources of light (LLLT + LEDT) and different wavelengths (red and infrared) in the same device were found in seven studies. Table 2 shows more details regarding the photobiomodulation therapy parameters.

A cluster device was used in 27 trials to reach a wider application area, and one study used the light application by scanning mode, whereas 38 conducted the application in direct contact with the skin.

In general, positive results were found using both LLLT and LEDT or a combination of both in a wavelength range from 655 to 950 nm. Most of the positive results were observed, with an energy dose range from 20 to 60 J for small muscular groups (representing 85%)

 Table 5
 Creatine kinase (CK) activity

| Authors                            | Creatine kinase                                                                                       | (CK) activity (IU                                                                                               | I/L)                                                                                          |                                                                                                                                    |                                                            |                                                                                                                                    |                                                                                                                                                     |
|------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Antonialli et al. [14]             | PL<br>10 J<br>30 J<br>50 J                                                                            | Pre<br>$504.12 \pm 54.69$<br>$489.67 \pm 46.02$<br>$521.00 \pm 84.50$<br>$475.17 \pm 112.59$<br>pred to placebo | Post<br>$581.55 \pm 68.97$<br>$448.50 \pm 64.58$<br>$537.50 \pm 78.53$<br>$530.83 \pm 134.17$ | $\begin{array}{c} 1 \text{ h} \\ 748.37 \pm 84.92 \\ 472.17 \pm 41.30 * \\ 567.33 \pm 100.80 * \\ 507.00 \pm 108.12 * \end{array}$ |                                                            | $\begin{array}{c} 24 \text{ h} \\ 1168.32 \pm 170.80 \\ 674.33 \pm 44.26* \\ 576.00 \pm 104.69* \\ 709.33 \pm 105.08* \end{array}$ | $\begin{array}{c} 48 \text{ h} \\ 1297.60 \pm 163.18 \\ 531.00 \pm 80.36^{\ast} \\ 502.67 \pm 53.23^{\ast} \\ 509.83 \pm 120.99^{\ast} \end{array}$ |
| Baroni et al. [26]                 | Baseline LLLT<br>144.69 $\pm$ 59.01                                                                   | area to placebo                                                                                                 | Baseline PL<br>155.16 ± 51.27                                                                 |                                                                                                                                    |                                                            | 24 h LLLT<br>271.70 ± 146.31                                                                                                       | 24 h PL<br>497.75 ± 362.97                                                                                                                          |
| De Marchi et al. [29]              | Before LLLT<br>$151.74 \pm 45.15$<br>n = 0.0001*                                                      |                                                                                                                 |                                                                                               |                                                                                                                                    |                                                            | ELET 24 h $p < 0.05^{\circ}$<br>Before PL<br>150.10 ± 48.60                                                                        | After LLLT<br>178.26 ± 82.36*                                                                                                                       |
| De Marchi et al. [17]              | $p = 0.0001^{\circ}$<br>PBMT<br>* $n < 0.01$                                                          |                                                                                                                 | Pre<br>66.91 ± 8.70                                                                           | $\begin{array}{l}Post\\109.61\pm34.48\end{array}$                                                                                  |                                                            | ${}^{1}_{82.67 \pm 38.02 *}$                                                                                                       | 24 h<br>111.00 ± 69.00*                                                                                                                             |
|                                    | PL<br>p < 0.01<br>PL                                                                                  |                                                                                                                 | $63.95\pm5.44$                                                                                | $132.37\pm45.34$                                                                                                                   |                                                            | $131.57\pm84.45$                                                                                                                   | $294.53 \pm 120.60$                                                                                                                                 |
| De Paiva et al. [18]               | PBMT                                                                                                  |                                                                                                                 | Pre<br>$51.01 \pm 12.35$<br>p > 0.05<br>$44.11 \pm 7.77$                                      | Post<br>$55.53 \pm 15.58$<br>p > 0.05<br>$51.30 \pm 6.79$                                                                          |                                                            | 1 h<br>56.69 $\pm$ 16.03<br>p > 0.05<br>56.02 $\pm$ 16.86                                                                          | 24 h<br>54.63 $\pm$ 16.65*<br>p < 0.05<br>100 84 $\pm$ 13.66                                                                                        |
| Felismino et al. [31] <sup>a</sup> | p > 0.05<br>PL<br>Baseline                                                                            |                                                                                                                 | Immediately after                                                                             | $51.50 \pm 0.79$                                                                                                                   | 48 h                                                       | $30.92 \pm 10.80$                                                                                                                  | LLLT<br>Baseline                                                                                                                                    |
|                                    | 136.00 $\pm$ 12.8<br>* Difference from<br>group ( $n < 0$ )                                           | m laser                                                                                                         | $156 \pm 16.9$                                                                                | $290.00 \pm 45.6$                                                                                                                  | $3220.00 \pm 189$                                          | $4295.00 \pm 200$                                                                                                                  | $409.00 \pm 18.6$                                                                                                                                   |
| Ferraresi et al. [56] <sup>a</sup> | LEDT 105 J<br>Before<br>$328.0 \pm 188.9$<br>n = 0.001                                                | )-                                                                                                              | After<br>499.6 ± 232.0                                                                        | LEDT 210 J<br>Before<br>$338.8 \pm 130.3$<br>n = 0.993                                                                             | After<br>364.1 ± 127.5                                     |                                                                                                                                    | LEDT 315 J<br>Before<br>$245.1 \pm 126.9$<br>n = 0.407                                                                                              |
| Leal-Junior et al. [39]            | Before cluster L<br>$190.75 \pm 93.19$<br>p < 0.05* cluster<br>p < 0.01** cl                          | EDT<br>r × placebo/<br>uster × probe                                                                            |                                                                                               | Before LLLT<br>232.13 $\pm$ 153.28                                                                                                 | Before PL<br>192.50 ± 69.80                                |                                                                                                                                    | After cluster LEDT<br>171.87 ± 41.48* **                                                                                                            |
| Leal-Junior et al. [40]            | Before LEDT<br>$53.62 \pm 23.37$                                                                      | uster ··· probe                                                                                                 |                                                                                               | Before PL<br>52.91 ± 40.78                                                                                                         |                                                            |                                                                                                                                    | After LEDT<br>50.58 $\pm$ 4.47*                                                                                                                     |
| Leal-Junior et al. [41]            | Before LLLT<br>$108.64 \pm 33.68$<br>n = 0.7737                                                       |                                                                                                                 |                                                                                               | Before PL<br>107.72 ± 41.12                                                                                                        |                                                            |                                                                                                                                    | After LLLT<br>$111.16 \pm 7.04*$<br>n = 0.0133*                                                                                                     |
| Leal-Junior et al. [43]            | Before LLLT<br>$281 \pm 196.3$<br>p > 0.05                                                            |                                                                                                                 |                                                                                               | Before PL<br>340.6 ± 335.6                                                                                                         |                                                            |                                                                                                                                    | After LLLT<br>$263.6 \pm 134.2*$<br>p = 0.017*                                                                                                      |
| Leal-Junior et al. [44]            | PL<br>Baseline<br>$90.55 \pm 20.28$<br>$n \le 0.05$                                                   | Post exercise $95.28 \pm 7.92$                                                                                  | Post treatment $88.83 \pm 21.57$                                                              |                                                                                                                                    | LEDT<br>Baseline<br>$92.30 \pm 19.67$                      | Post exercise $107.52 \pm 13.42$                                                                                                   | Post treatment $83.75 \pm 9.56*$                                                                                                                    |
| Reis et al. [49] <sup>a</sup>      | PL<br>Baseline<br>Day 1<br>$297.0 \pm 171.98$                                                         | Day 8<br>420.4 ± 314.31                                                                                         | Post exercise<br>Day 1<br>314.01 ± 184.46                                                     | Day 8<br>414.17 ± 302.08                                                                                                           | Prefatigue laser<br>Baseline<br>Day 1<br>$239.4 \pm 50.28$ | Day 8<br>205.9 ± 90.1022396                                                                                                        | Post fatigue<br>Day 1<br>248.2 ± 49.86                                                                                                              |
|                                    | *Prefatigue laser<br>**Placebo versu                                                                  | versus postfatigues $p < 0.01$ . postfati                                                                       | laser $p < 0.05$ .<br>gue laser                                                               |                                                                                                                                    |                                                            |                                                                                                                                    |                                                                                                                                                     |
| Vanin et al. [51] <sup>a</sup>     | PL<br>10 J<br>30 J<br>50 J                                                                            | Pre<br>$219.7 \pm 50.50$<br>$212.40 \pm 59.78$<br>$227.80 \pm 65.28$<br>$233.6 \pm 52.21$<br>red to placebo     | Post<br>$277.01 \pm 55.30$<br>$249.93 \pm 60.76$<br>$291.90 \pm 56.28$<br>$268.92 \pm 31.22$  | $\begin{array}{l} 1 \text{ h} \\ 373.90 \pm 59.50 \\ 374.49 \pm 65.73 \\ 421.53 \pm 61.20 \\ 266.51 \pm 51.11 \end{array}$         |                                                            | $\begin{array}{l} 24 \text{ h} \\ 689.12 \pm 53.10 \\ 467.92 \pm 66.85 \\ 680.3 \pm 65.60 \\ 456.76 \pm 50.13 \end{array}$         |                                                                                                                                                     |
| Zagatto et al. [55]                | p > 0.05 compared<br>LLLT group<br>Pre<br>125.26 $\pm$ 70.25<br>(79.63–170.88)<br>a $p < 0.05$ to pre | Post<br>$114.06 \pm 56.43$<br>(75.99-152.14)<br>e in the same group                                             | 24 h<br>84.30 $\pm$ 33.36<br>(59.34–109.26)<br>b <i>p</i> < 0.05 to post i                    | 48 h<br>$60.76 \pm 40.66^{ab}$<br>(29.35–92.17)<br>in the same group                                                               |                                                            |                                                                                                                                    | PL group<br>Pre<br>97.30 ± 58.32<br>(51.68–142.92)                                                                                                  |
| Authors                            | Creatine                                                                                              | e kinase (CK) acti                                                                                              | vity (IU/L)                                                                                   |                                                                                                                                    |                                                            |                                                                                                                                    |                                                                                                                                                     |
| Antonialli et al. [14]             | 72 h<br>1173.09<br>526.67 =                                                                           | ± 404.15<br>± 58.59*                                                                                            |                                                                                               |                                                                                                                                    | 90<br>10<br>87                                             | 5 h<br>)77.81 ± 372.23<br>)77.67 ± 111.72*                                                                                         |                                                                                                                                                     |

 $\underline{\textcircled{O}}$  Springer

# Table 5 (continued)

| Authors                            | Creatine kinase (CK) ac                         | ctivity (IU/L)                                      |                       |                                        |                          |
|------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------|----------------------------------------|--------------------------|
|                                    | $414.00 \pm 90.39^{*}$<br>540.33 + 194.00*      |                                                     |                       | $604.17 \pm 64.76*$<br>1078 50 ± 41.25 |                          |
|                                    | * $n < 0.05$ compared to n                      | lacebo                                              |                       | 1078.50 ± 41.25                        |                          |
| Baroni et al [26]                  | p < 0.05 compared to p<br>48 h L L L T          | lacebo                                              |                       | 48 h PI                                |                          |
| Darom et al. [20]                  | $435.95 \pm 238.04$                             |                                                     |                       | $1327.58 \pm 949.82$                   |                          |
|                                    | LLLT 48 h $p < 0.05*$                           |                                                     |                       |                                        |                          |
| De Marchi et al. [29]              | After LLLT                                      |                                                     | After PL              |                                        |                          |
|                                    | $178.26 \pm 82.36*$                             |                                                     | $290.42 \pm 127.11$   |                                        |                          |
|                                    | p = 0.0001*                                     |                                                     |                       |                                        |                          |
| De Marchi et al. [17]              | 24 h                                            |                                                     | 48 h                  | 72 h                                   |                          |
|                                    | $111.00 \pm 69.00^{*}$                          |                                                     | $101.49 \pm 69.01*$   | $73.48 \pm 27.00*$                     |                          |
|                                    | p < 0.01                                        |                                                     | 201.92 + 192.05       | $226.02 \pm 101.12$                    |                          |
|                                    | $294.33 \pm 120.00$                             |                                                     | $291.82 \pm 182.03$   | $220.02 \pm 101.12$                    |                          |
| De Paiva et al [18]                | p > 0.03<br>48 h                                |                                                     | 72 h                  | 96 h                                   |                          |
| De l'alva et al. [10]              | $56.55 \pm 17.63*$                              |                                                     | $52.35 \pm 16.26*$    | $43.66 \pm 16.30^{*}$                  |                          |
|                                    | p < 0.05                                        |                                                     | p < 0.05              | p < 0.05                               |                          |
|                                    | $118.91 \pm 12.45$                              |                                                     | $99.55 \pm 10.38$     | $99.47 \pm 11.01$                      |                          |
|                                    | p > 0.05                                        |                                                     |                       |                                        |                          |
| Felismino et al. [31] <sup>a</sup> | LLLT                                            |                                                     |                       |                                        |                          |
|                                    | Immediately after                               | 24 h                                                | 48 h                  | 72 h                                   |                          |
|                                    | $448.00 \pm 22.2$                               | $816.00 \pm 67.03$                                  | $2088.00 \pm 84.11$   | 2520.00 ± 94.72 *                      |                          |
|                                    | * Difference from laser                         |                                                     |                       |                                        |                          |
| E                                  | group ( $p < 0.05$ ).                           |                                                     | DI                    |                                        |                          |
| Ferraresi et al. [56]              | LEDI 315 J<br>After                             |                                                     | PL<br>Before          | After                                  |                          |
|                                    | $318.0 \pm 153.5$                               |                                                     | 270.3 + 112.4         | $406.1 \pm 150.1$                      |                          |
|                                    | p = 0.407                                       |                                                     | n = 0.012             | 400.1 ± 150.1                          |                          |
| Leal-Junior et al. [39]            | After LLLT                                      |                                                     | After PL              |                                        |                          |
| [_,]                               | $275.51 \pm 32.90$                              |                                                     | $219.38 \pm 15.18$    |                                        |                          |
|                                    | $p < 0.05^*$ cluster × place                    | bo/                                                 |                       |                                        |                          |
|                                    | $p < 0.01^{**}$ cluster × p                     | robe                                                |                       |                                        |                          |
| Leal-Junior et al. [40]            | After PL                                        |                                                     |                       |                                        |                          |
|                                    | $57.24 \pm 8.65$                                |                                                     |                       |                                        |                          |
| T 1 T 1 . 1 F413                   | $p = 0.035^*$                                   |                                                     |                       |                                        |                          |
| Leal-Junior et al. [41]            | After PL                                        |                                                     |                       |                                        |                          |
|                                    | $130.21 \pm 22.02$                              |                                                     |                       |                                        |                          |
| Leal-Junior et al [43]             | p = 0.0133                                      |                                                     |                       |                                        |                          |
| Lear Junior et al. [45]            | $525.7 \pm 386.5$                               |                                                     |                       |                                        |                          |
|                                    | p = 0.017*                                      |                                                     |                       |                                        |                          |
| Leal-Junior et al. [44]            | LEDT                                            | Cold water immersion the                            | herapy                |                                        |                          |
|                                    | Post treatment                                  | Baseline                                            | Post exercise         | Post treatment                         |                          |
|                                    | $83.75 \pm 9.56*$                               | $91.29 \pm 20.49$                                   | $92.99 \pm 14.91$     | $87.84 \pm 13.67$                      |                          |
|                                    | p < 0.05                                        |                                                     |                       |                                        |                          |
| Reis et al. [49] <sup>a</sup>      | Prefatigue laser                                | Postfatigue laser                                   |                       |                                        |                          |
|                                    | Post fatigue                                    | Baseline                                            | D 9                   | Post fatigue                           | D 9                      |
|                                    | Day 8 $217.2 + 80.22$                           | Day 1 $224.56 \pm 122.22$                           | Day 8                 | Day 1<br>228 84 $\pm$ 124 61           | Day 8                    |
|                                    | $21/.3 \pm 69.23$<br>*Prefatique laser versus r | $234.30 \pm 133.22$                                 | $289.01 \pm 213.07$   | $238.84 \pm 134.01$                    | $100.3 \pm 00.33^{++++}$ |
|                                    | **Placebo versus $n < 0.0$                      | 1 nostfatique laser                                 |                       |                                        |                          |
| Vanin et al [51] <sup>a</sup>      | 48 h                                            | 72 h                                                |                       | 96 h                                   |                          |
|                                    | $742.34 \pm 62.90$                              | $578.59 \pm 64.80$                                  |                       | $562.90 \pm 58.60$                     |                          |
|                                    | $447.96 \pm 61.84$                              | $400.85 \pm 58.13$                                  |                       | $360.12 \pm 61.01$                     |                          |
|                                    | $711.28 \pm 64.0$                               | $498.49 \pm 57.87$                                  |                       | $481.81 \pm 59.85$                     |                          |
|                                    | $390.14 \pm 39.98$                              | $293.00 \pm 52.40$                                  |                       | $280.96 \pm 60.10$                     |                          |
|                                    | p > 0.05 compared to pla                        | cebo                                                |                       |                                        |                          |
| Zagatto et al. [55]                | PL group                                        |                                                     | o                     | 10.1                                   |                          |
|                                    | Post                                            |                                                     | 24 h                  | 48 h                                   |                          |
|                                    | $10/.00 \pm 51.22$                              |                                                     | $82.22 \pm 37.17$     | $(9.27 \pm 47.93)$                     |                          |
|                                    | (09.38 - 143./4)                                | $m_{\rm e}$ group $h_{\rm r} < 0.05$ to $r_{\rm e}$ | (3/.20-10/.1/)        | (47.80-110.08)                         |                          |
|                                    | a p < 0.05 to pre in the sa                     | and group $0 p < 0.05$ to pe                        | ist in the same group |                                        |                          |

LLLT low-level laser therapy, LEDT light-emitting diode therapy, PL placebo, PBMT photobiomodulation therapy

\*Statistically significant

<sup>a</sup> Unpublished data provided by author

of doses with positive results), and 60 to 300 J for large muscular groups (representing 75% of doses with

positive results), and maximal power output of 200 mW per diode (Fig. 6).

| Table 6   C-reactive pi  | totein (CRP)                                    |                               |                                  |                                                 |                                                       |                                |                                                    |                                |                                  |
|--------------------------|-------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------|----------------------------------|
| Authors                  | C-reactive protein (0                           | CRP) (mg/dL)                  |                                  |                                                 |                                                       |                                |                                                    |                                |                                  |
| Leal-Junior et al. [40]  | Before LEDT<br>1536.00 $\pm$ 742.09<br>p > 0.05 |                               | Before PL<br>1077.60 ± 643.24    |                                                 | Change after LE<br>(-) $364.80 \pm 616$<br>p = 0.030* | DT<br>.86                      | Change after PL<br>28.80 ± 361.65                  |                                |                                  |
| Leal-Junior et al. [43]  | Before LLLT<br>$38.7 \pm 44$<br>p > 0.05        |                               | Before PL $26.7 \pm 29.3$        |                                                 | After LLLT<br>1.3 $\pm$ 4<br>$p = 0.047^*$            |                                | After PL<br>92 ± 115.1                             |                                |                                  |
| Leal-Junior et al. [44]  | PL<br>Pre<br>$1068.65 \pm 578.98$<br>p > 0.05   | Postexercise $196 \pm 156.58$ | Posttreatment $182.0 \pm 677.14$ | LEDT<br>Pre<br>$1112.35 \pm 546.62$<br>p > 0.05 | Postexercise $252.0 \pm 654.28$                       | Posttreatment $-66 \pm 304.50$ | CWIT<br>Pre<br>1087.52 ± 534.02<br><i>p</i> > 0.05 | Postexercise<br>444.0 ± 802.87 | Posttreatment $150.0 \pm 646.30$ |
| Table 7     Lactate dehy | drogenase (LDH)                                 |                               |                                  |                                                 |                                                       |                                |                                                    |                                |                                  |
| Authors                  | (1/01) HUL                                      |                               |                                  |                                                 |                                                       |                                |                                                    |                                |                                  |
| Baroni et al. [26]       | Baseline LLLT<br>186.02 ± 44.92                 | Baseline PL<br>182.59 ± 43.   | 84                               | 24 h LLLT<br>296.93 ± 99.98                     |                                                       | 24 h PL<br>290.10 ± 87.54      | 48<br>366                                          | h LLLT<br>5.06 ± 84.46*        | 48 h PL<br>483.85 ± 180.29       |
|                          | LLLT PL at 48 h                                 | p < 0.05*                     |                                  |                                                 |                                                       |                                |                                                    |                                |                                  |
| De Marchi et al. [29]    | Before LLLT<br>281.89 ± 44.36                   | Before PL<br>274.93 ± 37.     | 62                               |                                                 |                                                       | After LLLT<br>276.80 ± 32.86*  | Aft<br>332                                         | er PL<br>2.72 ± 63.07          |                                  |
| Zagatto et al. [55]      | $p_{T}^{*} = 0.0001$<br>LLLT group              | Pre (IU/L)                    |                                  | Post (IU/L)                                     |                                                       | 24 h (IU/L)                    | 48                                                 | h (IU/L)                       |                                  |
|                          |                                                 | $87.55 \pm 25.0$<br>p > 0.05  | 7 (71.31–103.78)                 | $79.03 \pm 29.51$ (6                            | 60.37–97.69)                                          | 83.28 ± 14.21 (73              | .30–93.26) 99.                                     | 04 ± 33.26 (81.44–1            | 16.65)                           |
|                          | PL group                                        | $64.12 \pm 20.6$<br>p > 0.05  | 5 (47.91–80.37)                  | 81.17 ± 22.90 (6                                | 52.51–99.83)                                          | 82.34 ± 14.05 (72              | .36–92.33) 84.                                     | 79 ± 11.66 (67.18−1            | 02.40)                           |
| LLLT low-level laser the | erapy, LEDT light-emi                           | itting diode therap           | y, PL placebo                    |                                                 |                                                       |                                |                                                    |                                |                                  |

\*Statistically significant

| Table 8 Concent                                           | ric peak torque s                             | and isometric peak     | torque                            |                        |                                          |                        |                                                                                                                      |                                                                                                          |                                                                                                                   |
|-----------------------------------------------------------|-----------------------------------------------|------------------------|-----------------------------------|------------------------|------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Authors                                                   | Concentric po                                 | eak torque (Nm)        |                                   |                        |                                          |                        | Isometric peak torque - M                                                                                            | VC (Nm)                                                                                                  |                                                                                                                   |
| Antonialli et al. [14]                                    |                                               |                        |                                   |                        |                                          |                        | PL<br>10J<br>30J                                                                                                     | Pre<br>271.30 ± 28.71<br>279.50 ± 14.33<br>286.63 ± 38.86                                                | Post<br>187.95 ± 31.68<br>241.90 ± 25.35*<br>271.20 ± 26.55*                                                      |
| Baroni et al. [26]                                        |                                               |                        |                                   |                        |                                          |                        | 50 J<br>*Significant difference ( <i>p</i> <'<br>Baseline LLLT<br>292.92 ± 42.93<br>MVC immediately after <i>p</i> < | $254.38 \pm 28.24$<br>0.05) compared to pl<br>Baseline PL<br>$283.98 \pm 47.07$<br>0.05*, MVC 24 h $p$ . | $219.62 \pm 26.88$<br>acebo<br>Immediately after LLLT<br>$188.93 \pm 43.04$<br>$< 0.05^*$ , MVC 48 h $p < 0.05^*$ |
| Baroni et al. [27]                                        |                                               |                        |                                   |                        |                                          |                        | (compared to placebo)<br>Before LEDT<br>$284.81 \pm 54.52$<br>p = 0.034*                                             |                                                                                                          | Before PL<br>282.65 ± 53.64                                                                                       |
| Baroni et al. [66]                                        | Control<br>Pre<br>$215 \pm 29.24$<br>n = 0.26 | Post<br>219.83 ± 33.78 | Training<br>Pre<br>219.86 ± 28.89 | Post<br>244.31 ± 30.61 | Training + LLLT<br>Pre<br>217.58 ± 30.02 | Post<br>248.18 ± 35.98 | Control<br>Pre<br>257.94 ± 44.18                                                                                     | Post<br>260.83 ± 45.80                                                                                   |                                                                                                                   |
| De Marchi et al. [17]                                     | b = 0.20                                      |                        | $p \sim 0.01$                     |                        | 10.0 < d                                 |                        | P = 0.7.7<br>PBMT                                                                                                    | Pre $71.66 \pm 16.03$                                                                                    | Post<br>49.04 ± 10.94                                                                                             |
|                                                           |                                               |                        |                                   |                        |                                          |                        | $p_{\rm L}^{*p} < 0.05$                                                                                              | $67.11 \pm 10.39$                                                                                        | $41.63 \pm 9.13$                                                                                                  |
| De Paiva et al. [18]                                      |                                               |                        |                                   |                        |                                          |                        | PBMT<br>PL<br>2005                                                                                                   | $\begin{array}{l} Pre \\ 256.31 \pm 12.51 \\ 258.24 \pm 30.81 \end{array}$                               | Post<br>$228.64 \pm 12.91$<br>$211.59 \pm 29.50$                                                                  |
| Ferraresi et al. [32]<br>Fritsch et al. [33] <sup>a</sup> | Values not ave                                | allable in the text    |                                   |                        |                                          |                        | PL<br>LLLT/placebo preexercise<br>PL<br>Pre<br>319.7 ± 71.62<br>LLLT/placebo postexercise<br>PL<br>Pre               | 24 h<br>263.5 ± 76.95<br>24 h                                                                            | 48 h<br>275.02 ± 74.55<br>48 h                                                                                    |
| Gorgey et al. [34]                                        |                                               |                        |                                   |                        |                                          |                        | $301.53 \pm 45.07$<br>Control<br>$47 \pm 16$                                                                         | $266.24 \pm 41.78$                                                                                       | $268.16 \pm 50.20$                                                                                                |
| Hemmings et al. [35]                                      |                                               |                        |                                   |                        |                                          |                        | p = 0.99<br>PL<br>258.4 ± 69.4                                                                                       |                                                                                                          | 30s LED<br>259.8 ± 69.9                                                                                           |
| Rossato et al. [50]                                       |                                               |                        |                                   |                        |                                          |                        | p > 0.05<br>Large cluster<br>Pre<br>$88 \pm 14$                                                                      | Post*<br>76 ± 11                                                                                         | Large cluster placebo<br>Pre<br>88 ± 16                                                                           |
| Vanin et al. [51]                                         |                                               |                        |                                   |                        |                                          |                        | $^{\circ}$ 1 ime effect ( $p < 0.001$ )                                                                              | Pre<br>249.90 ± 22.65                                                                                    | Post $228.14 \pm 13.57$                                                                                           |

| Table 8 (continue                                         | d)                                                                                                                                    |                                                                                    |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                                                   | Concentric peak torque (Nm)                                                                                                           |                                                                                    | Isometric pe                                                                                                                                               | k torque - MVC (Nm)                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |
| Vanin et al. [52]                                         |                                                                                                                                       |                                                                                    | 10<br>30<br>50<br>*Significant d<br>MVC (Nm) h<br>MVC (Nm) le<br><sup>a</sup> Significant di<br><sup>b</sup> Significant di<br><sup>c</sup> Significant di | 253.32 $\pm$ 24.53<br>246.79 $\pm$ 23.61<br>249.78 $\pm$ 15.71<br>(fference ( $p < 0.05$ ) compared to $p$<br>photo + photo<br>Photo + photo<br>Placebo + photo<br>Placebo + photo<br>Placebo + photo<br>Placebo + photo<br>Placebo + photo<br>Placebo + photo<br>fference compared to photo + photo<br>fference compared to placebo + photo<br>fference compared to placebo + photo | 226.67 $\pm$ 15.35<br>220.83 $\pm$ 24.00<br>259.04 $\pm$ 19.43*<br>lacebo<br>Baseline<br>193.20 $\pm$ 23.27<br>202.13 $\pm$ 24.55<br>193.20 $\pm$ 23.27<br>202.13 $\pm$ 24.55<br>196.24 $\pm$ 21.38<br>204.73 $\pm$ 11.02<br>204.73 $\pm$ 11.02<br>203.24 $\pm$ 21.38<br>209.74 $\pm$ 17.21<br>209.44 $\pm$ 17.21<br>to group ( $p < 0.05$ )<br>hoto group ( $p < 0.05$ ) |
| Authors                                                   | Isometric peak torque - MV(                                                                                                           | C (Nm)                                                                             |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| Antonialli et al. [14]                                    | $\begin{array}{c c} & 1 & h \\ & 191.48 \pm 37.83 \\ 241.37 \pm 15.19^{*} \\ 778.57 + 37.78^{*} \end{array}$                          | 24 h<br>220.18 $\pm$ 12.09<br>276.14 $\pm$ 23.82<br>281 57 $\pm$ 76.87*            | 48 h<br>226.76 $\pm$ 10.25<br>280.17 $\pm$ 36.38<br>281.62 $\pm$ 20.70 $*$                                                                                 | 72 h<br>252.82 ± 14.64<br>299.32 ± 34.35<br>317 00 ± 56.12*                                                                                                                                                                                                                                                                                                                          | 96 h<br>$265.06 \pm 24.79$<br>$325.25 \pm 37.00$<br>$336.88 \pm 77.03$                                                                                                                                                                                                                                                                                                    |
|                                                           | 231.68 ± 24.46*<br>*Simificant difference (n < 0.0                                                                                    | $240.02 \pm 22.29$<br>05) commared to alacebo                                      | $262.51 \pm 29.97*$                                                                                                                                        | $282.68 \pm 30.62$                                                                                                                                                                                                                                                                                                                                                                   | $304.73 \pm 26.23*$                                                                                                                                                                                                                                                                                                                                                       |
| Baroni et al. [26]                                        | Immediately after PL<br>Immediately after PL<br>154.03 $\pm$ 34.57<br>MVC immediately after $p < 0$ .<br>(commared to placebo)        | 24 h LLLT<br>24 h LLLT<br>249.43 $\pm$ 42.61<br>05*, MVC 24 h $p < 0.05*$ , MVC 48 | 24 h PL<br>205.09 $\pm$ 43.52<br>h $p < 0.05^*$                                                                                                            | 48 h LLLT<br>267.09 ± 37.40                                                                                                                                                                                                                                                                                                                                                          | 48 h PL<br>216.14 ± 50.17                                                                                                                                                                                                                                                                                                                                                 |
| Baroni et al. [27]                                        | Before PL<br>282.65 ± 53.64<br>0.0348                                                                                                 | After LEDT $237.68 \pm 48.82^*$                                                    | After PL<br>225.68 ± 44.14                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| Baroni et al. [66]                                        | p = 0.037<br>Training<br>Pre<br>267.86 ± 33.62<br>p < 0.01*                                                                           | Post<br>303.91 ± 36.03                                                             | Training + LLLT<br>Pre<br>252.58 ± 26.01<br>250.01*                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                      | Post<br>308.14 ± 32.88                                                                                                                                                                                                                                                                                                                                                    |
| De Marchi et al. [17                                      | $\begin{bmatrix} p \\ 1 \\ 1 \\ 64.1 \\ 4 + 9.83 \\ 8p < 0.05 \\ 47.06 \pm 5.43 \\ 65.43 \\ 65.005 \\ 65.005 \\ 65.005 \end{bmatrix}$ | 24 h<br>70.73 ± 10.04*<br>56.86 ± 7.22                                             | 48  h<br>72.09 ± 10.71*<br>58.08 ± 5.67                                                                                                                    | 72 h<br>76.66 $\pm$ 6.45*<br>58.14 $\pm$ 9.44                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| De Paiva et al. [18]                                      | $2 \sim 0.0 < q$<br>1 1<br>234.88 ± 31.08<br>210.84 ± 20.76<br>2 > 0.05                                                               | 24 h<br>289.34 ± 34.88*<br>221.24 ± 22.93                                          | $\begin{array}{l} 48 \ h \\ 287.24 \pm 32.71 * \\ 224.18 \pm 16.16 \end{array}$                                                                            | 72 h<br>275.91 $\pm$ 27.56*<br>234.25 $\pm$ 22.12                                                                                                                                                                                                                                                                                                                                    | 96 h<br>293.71 ± 32.32*<br>250.05 ± 21.91                                                                                                                                                                                                                                                                                                                                 |
| Ferraresi et al. [32]<br>Fritsch et al. [33] <sup>a</sup> | ,<br>LLLT/placebo preexercise<br>PL                                                                                                   | LLLT                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

| Authors                                                                                                 | Isometric peak torque - MVC                                                                                                                                                                                                                                                                                          | (Nin)                                                                                                                |                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                              |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                         | A THE AREAS AND A TRAILING                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                              |
|                                                                                                         | 72 h<br>286.23 ± 68.90<br>LLLT/placebo postexercise                                                                                                                                                                                                                                                                  | Pre<br>316.33 ± 82.68                                                                                                | 24 h<br>273.05 ± 83.04                                                                                                                                                             | $\begin{array}{c} 48 \text{ h} \\ 276.62 \pm 83.90 \end{array}$                                                                                                                    | 72 h<br>283.99 $\pm$ 68.46                                                   |
|                                                                                                         | PL<br>72 h<br>22014 - 52 00                                                                                                                                                                                                                                                                                          | Pre                                                                                                                  | 24 h                                                                                                                                                                               | 48 h                                                                                                                                                                               | 72 h                                                                         |
| Gorgey et al. [34]                                                                                      | 2.19.54 ± 5.2.02<br>3.1 LLLT<br>45 ± 17                                                                                                                                                                                                                                                                              | 00.04 ± 20.062                                                                                                       | c1.cf = 25fc<br>7 J LLLT<br>7 f = 17                                                                                                                                               | 17.6C ± CC.CO7                                                                                                                                                                     | 212.92 ± 44.22                                                               |
| Hemmings et al. [35]                                                                                    | p = 0.59<br>30s LED<br>259.8 ± 69.9                                                                                                                                                                                                                                                                                  | 60s LED<br>258.2 ± 70.1                                                                                              |                                                                                                                                                                                    | 120 s LED<br>256.2 ± 61.6                                                                                                                                                          |                                                                              |
| Rossato et al. [50]                                                                                     | <i>p</i> > 0.00<br>Large cluster placebo<br>Post*<br>77 ± 13<br>*Time acfect (n > 0.001)                                                                                                                                                                                                                             | Small cluster<br>Pre<br>86 ± 16                                                                                      | Post*<br>75 ± 16                                                                                                                                                                   | Small cluster placebo<br>Pre<br>89 ± 17                                                                                                                                            | $Post^*$<br>75 ± 14                                                          |
| Vanin et al. [51]                                                                                       | 1 h. 213.86 $\pm 29.00$<br>213.86 $\pm 29.00$<br>238.41 $\pm 10.00$<br>215.91 $\pm 6.36$<br>262.17 $\pm 20.08^*$<br>*Significant difference ( $p < 0.05$                                                                                                                                                             | 24 h<br>247.40 ± 11.40<br>286.77 ± 22.78*<br>223.44 ± 9.23<br>275.97 ± 12.21*<br>) compared to placebo               | $\begin{array}{l} 48 \text{ h} \\ 249.72 \pm 28.28 \\ 294.31 \pm 21.75 \text{*} \\ 242.11 \pm 7.90 \\ 261.92 \pm 27.32 \end{array}$                                                | 72 h<br>243.86 ± 12.41<br>292.08 ± 20.71 *<br>228.44 ± 12.73<br>270.07 ± 13.43                                                                                                     | 96 h<br>256.86 ± 8.52<br>305.57 ± 23.30*<br>240.79 ± 18.72<br>281.22 ± 22.14 |
| Vanin et al. [52]                                                                                       | 4 weeks<br>200.54 ± 19.98<br>227.07 ± 33.75<br>203.23 ± 25.15<br>213.33 ± 23.74<br>215.66 ± 23.71<br>239.04 ± 24.96 <sup>b</sup><br>207.62 ± 24.68<br>215.46 ± 19.92<br><sup>a</sup> Significant difference compared<br><sup>b</sup> Significant difference compared<br><sup>c</sup> Significant difference compared | to photo + photo group $(p < 0.05)$<br>to placebo + photo group $(p < 0.05)$<br>placebo + placebo group $(p < 0.05)$ | 8 weeks<br>215.43 ± 21.89<br>251.45 ± 35.76 <sup>a</sup><br>224.48 ± 28.04<br>226.0 ± 30.0<br>229.23 ± 23.86<br>229.23 ± 23.0 <sup>a.b.c</sup><br>221.53 ± 27.08<br>225.47 ± 21.11 | 12 weeks<br>216.72 $\pm 25.18$<br>280.90 $\pm 38.68^{a,b,c}$<br>233.16 $\pm 27.99$<br>243.78 $\pm 24.16$<br>311.27 $\pm 31.36^{a,b,c}$<br>239.13 $\pm 23.86$<br>240.70 $\pm 26.15$ |                                                                              |
| LLLT low-level laser therapy,<br>*Statistically significant<br><sup>a</sup> Unpublished data provided b | <i>LEDT</i> light-emitting diode therapy, <i>P1</i> suthor                                                                                                                                                                                                                                                           | L placebo, PBMT photobiomodulation                                                                                   | therapy                                                                                                                                                                            |                                                                                                                                                                                    |                                                                              |

| Table 9 Total work a               | nd 1-RM test                                              |                                                                  |                            |                                                                 |                                                |                          |                                                                                                                                                                                                                                    |
|------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors                            | Total work (J)                                            |                                                                  |                            |                                                                 |                                                |                          | 1-RM                                                                                                                                                                                                                               |
| Baroni et al. [27]                 | LEDT<br>4113.25 $\pm$ 677.31<br>p = 0.182                 |                                                                  |                            | PL<br>4205.19 ± 746.15                                          |                                                |                          |                                                                                                                                                                                                                                    |
| Denis et al. [30] <sup>a</sup>     | Placebo<br>Baseline<br>$18,592.8 \pm 2585.09$<br>n > 0.05 | Post-yoyo<br>16,862.5 ± 1934.4                                   | End<br>• 18,216.9 ± 2930.6 | LEDT<br>Baseline<br>18,369.9 ± 2699.7                           | Post-yoyo<br>17,511.7 ± 2589.13                | End<br>18,332.8 ± 2885.3 |                                                                                                                                                                                                                                    |
| Felismino et al. [31] <sup>a</sup> | -<br>-<br>-                                               |                                                                  |                            |                                                                 |                                                |                          | PL<br>Baseline<br>39.45 ± 2.11<br><i>p</i> > 0.05                                                                                                                                                                                  |
| Ferraresi et al. [32]              |                                                           |                                                                  |                            |                                                                 |                                                |                          | Values described only in percentage<br>on the text and normalized by<br>BM                                                                                                                                                         |
| Leal-Junior et al. [41]            | LLLT (volleyball)<br>21,888.31 $\pm$ 2062.9<br>p = 0.3583 | 8                                                                |                            | PL (volleyball)<br>22,429.79 ± 2842.71                          |                                                |                          |                                                                                                                                                                                                                                    |
|                                    | LLLT (soccer)<br>16,214.97 ± 1639.8<br>p = 0.8681         | ×                                                                |                            | PL (soccer)<br>16,289.21 ± 1700.34                              |                                                |                          |                                                                                                                                                                                                                                    |
| Reis et al. [49] <sup>a</sup>      |                                                           |                                                                  |                            |                                                                 |                                                |                          | Day 1 (first session)                                                                                                                                                                                                              |
|                                    |                                                           |                                                                  |                            |                                                                 |                                                |                          | Day 8 (second session)                                                                                                                                                                                                             |
| Vanin et al. [52]                  |                                                           |                                                                  |                            |                                                                 |                                                |                          | Leg press right leg<br>Leg press left leg<br>Leg extension right leg<br>Leg extension left leg<br>*Significant difference compared to<br>placebo ( $p < 0.05$ )<br>**Data from the other groups can<br>be found in the manuscript. |
| Vieira et al. [53]                 | Nondominant leg                                           | $\begin{array}{l} Control\\ Before\\ 2309.8\pm 255.6\end{array}$ | After<br>2403.4 ± 205.6    | Training<br>Before After<br>2435.8 ± 379.6 2636.6 ± 477.2       | Training + LLLT<br>Before<br>2340.1 ± 484.2    | After<br>2644.3 ± 473.2  |                                                                                                                                                                                                                                    |
|                                    | Dominant leg                                              | p = 0.568<br>2350.5 ± 316.5<br>p = 0.798                         | $2417.4 \pm 230.5$         | $p = 0.011*$ 2501.3 $\pm$ 433.6 2813.0 $\pm$ 435.5 $p < 0.001*$ | p < 0.001*<br>2373.1 $\pm$ 409.8<br>p < 0.001* | $2682.5 \pm 490.2$       |                                                                                                                                                                                                                                    |

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

| Authors                            | Total work (J)                                                                                                       |                                   |                           |                                   | 1                    | I-RM                                                   |                     |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|-----------------------------------|----------------------|--------------------------------------------------------|---------------------|
| Vieira et al. [54]                 |                                                                                                                      |                                   |                           |                                   | H H C O              | PL<br>Baseline<br>71.5 ± 12.6<br>0.027* decreased 1 RM |                     |
| Authors                            | Total work (J)                                                                                                       | 1-RM                              |                           |                                   |                      |                                                        |                     |
| Baroni et al. [27]                 | LEDT<br>$4113.25 \pm 677.31$<br>p = 0.182                                                                            |                                   |                           |                                   |                      |                                                        |                     |
| Denis et al. $[30]^a$              | Placebo<br>Post-yoyo<br>$16,862.5 \pm 1934.4$<br>p > 0.05                                                            |                                   |                           |                                   |                      |                                                        |                     |
| Felismino et al. [31] <sup>a</sup> |                                                                                                                      | PL                                | LLLT                      |                                   |                      |                                                        |                     |
|                                    |                                                                                                                      | Immediately after<br>34.91 ± 2.18 | Baseline $43.35 \pm 2.02$ | Immediately after $36.36 \pm 2.2$ | 24 h<br>41.64 ± 2.28 | 48 h<br>42.73 ± 2.08                                   | 72 h<br>43.27 ± 2.9 |
|                                    |                                                                                                                      | p > 0.05                          | 1                         |                                   |                      |                                                        |                     |
| Ferraresi et al. [32]              |                                                                                                                      | values described only in pe       | rcentage on the text and  | normalized by BM                  |                      |                                                        |                     |
| Leal-Junior et al. [41]            | LLLT (volleyball)<br>$21,888.31 \pm 2062.98$<br>p = 0.3583<br>LLLT (soccer)<br>$16,214.97 \pm 1639.88$<br>p = 0.8681 |                                   |                           |                                   |                      |                                                        |                     |
| Reis et al. [49] <sup>a</sup>      | T.                                                                                                                   | PL                                | Prefatigue laser          |                                   | Postfatigue laser    |                                                        |                     |
|                                    |                                                                                                                      | $53.33 \pm 12.95$                 | $54.07 \pm 13.49$         |                                   | $52.59 \pm 14.20$    |                                                        |                     |
|                                    |                                                                                                                      | p = 0.9764                        |                           |                                   |                      |                                                        |                     |
|                                    |                                                                                                                      | $55.55 \pm 12.17$                 | $55.55 \pm 17.21$         |                                   | $56.29\pm8.38$       |                                                        |                     |
|                                    |                                                                                                                      | p = 0.9915                        |                           |                                   |                      |                                                        |                     |
| Vanin et al. [52]                  |                                                                                                                      |                                   | 4 weeks                   | 8 weeks                           |                      | 12 weeks                                               |                     |
|                                    |                                                                                                                      | Photo + placebo                   | 83.83 (主 8.79)            | $109.67 \ (\pm \ 13.14)^*$        |                      | $144.83 (\pm 22.53)^*$                                 |                     |
|                                    |                                                                                                                      | PL + PL                           | 72.25 (主 12.05)           | 88.42 (± 17.05)                   |                      | 104.42 (主 19.46)                                       |                     |
|                                    |                                                                                                                      | Photo + placebo                   | 88.25 (主 11.52)           | $114.00 (\pm 17.04)$              |                      | $145.33 \ (\pm 18.23)^*$                               |                     |
|                                    |                                                                                                                      | PL + PL                           | 83.42 (± 9.63)            | $106.92 (\pm 12.94)$              |                      | $123.08 \ (\pm 16.98)^{*}$                             |                     |
|                                    |                                                                                                                      | Photo + placebo                   | $95.83 \ (\pm 14.80)^{*}$ | $114.75~(\pm 20.33)^{*}$          |                      | 127.83 (± 22.93) <sup>*</sup>                          |                     |
|                                    |                                                                                                                      | PL + PL                           | 76.67 (± 11.52)           | 83.25 (± 14.37)                   |                      | 94.17 (± 13.58)                                        |                     |
|                                    |                                                                                                                      | Photo + placebo                   | $96.67 (\pm 14.67)^{*}$   | $117.33 (\pm 15.88)^{*}$          |                      | 132.92 (± 16.14) <sup>*</sup>                          |                     |

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 9 (continued)

| Authors                                   | Total work (J)                | 1-RM                            |                             |                |                 |
|-------------------------------------------|-------------------------------|---------------------------------|-----------------------------|----------------|-----------------|
|                                           |                               | PL + PL                         | 74.67 (主 8.27)              | 85.33 (±11.80) | 95.75 (± 11.76) |
|                                           |                               | *Significant difference comp    | red to nlacebo $(n > 0.05)$ |                |                 |
|                                           |                               | **Data from the other groups    | can                         |                |                 |
|                                           |                               | be lound in the manuscript      |                             |                |                 |
| Vieira et al. [53]                        | Control<br>Before             |                                 |                             |                |                 |
|                                           | $2309.8 \pm 255.6$            |                                 |                             |                |                 |
|                                           | p = 0.568<br>2350.5 ± 316.5   |                                 |                             |                |                 |
| Vieira et al. [54]                        | p = 0.798                     | PL                              | LLLT                        |                |                 |
|                                           |                               | Baseline                        | Baseline                    | Final          |                 |
|                                           |                               | $71.5 \pm 12.6$                 | $78.4\pm8.8$                | $120\pm41.8$   |                 |
|                                           |                               | 0.027* decreased 1RM            | 0.027*                      |                |                 |
| LLLT low-level laser therapy, i           | LEDT light-emitting diode the | rapy, PL placebo, Photo phototl | herapy                      |                |                 |
| *Statistically significant                |                               |                                 |                             |                |                 |
| <sup>a</sup> Unpublished data provided by | y author                      |                                 |                             |                |                 |

🖄 Springer

Table 9 (continued)

# Discussion

This systematic review aimed to summarize the evidence available regarding the effects of photobiomodulation therapy for the improvement of muscle performance and muscular fatigue reduction. We additionally tried to detect the best "therapeutic window" of the photobiomodulation therapy and the better time to apply the therapy to achieve the greater photobiostimulation effect.

Photobiomodulation therapy showed to be effective in most of the included studies for at least one variable related to performance or fatigue. Both LLLT and LEDT, or combination of both, in a wavelength range from 655 to 950 nm was used. Most of the positive results were observed with an energy dose range from 20 to 60 J for small muscular groups (representing 85% of doses with positive results), and 60 to 300 J for large muscular groups (representing 75% of doses with positive results), and a maximal power output of 200 mW per diode, mainly when applied before the exercise. Interestingly, positive results were found in most studies that combined different wavelengths and sources of light, and it must be explored because few studies used this kind of device. We also observed better results when a cluster device was used, especially in wide areas of application, such as in lower limb muscles. Our results corroborate with the findings in two previous reviews that identified ergogenic effect of photobiomodulation therapy on performance improvement when applied before exercise, using laser and/or LED sources of light [10, 11].

These reviews were performed with studies published until 2013. Thus far, many studies have been developed. To know, 13 studies have been included in the review performed by Leal-Junior et al. [11], whereas Borsa et al. [10] included 10 studies. In this review, we included 39 studies and statistical analysis was only performed if the variable of interest has at least eight studies. These data show the consistency of the results and the importance of a new review in this field.

The interaction of photobiomodulation therapy for the outcomes time to exhaustion, number of repetitions, isometric peak torque, and blood lactate, demonstrated by statistical analysis, indicates that this therapy can improve individual performance on exercise. However, these results are inconclusive due to heterogeneity and the low-level quality evidence between the studies and reaffirm the need to be more exploited. The mechanisms proposed are on increasing mitochondrial activity leading to more ATP production, and on modulating the release of inflammatory markers [10–12, 15, 26, 29, 32, 43, 48, 55]. It is an interesting field to be explored because this intervention may modulate the release of markers related to muscular damage and provide more energy to perform the exercise besides a shorter time to recover for the next event.

Few studies reported the results of CRP and LDH concentrations. Two studies of three reported positive results for each

| Authors                        | Peak powe           | er (W/kg)      |                 |                   |                  |                | Mean peak p                 | ower (W)            |                      |
|--------------------------------|---------------------|----------------|-----------------|-------------------|------------------|----------------|-----------------------------|---------------------|----------------------|
| Denis et al. [30] <sup>a</sup> | Placebo<br>Baseline | Post-yoyo      | End             | LEDT<br>Baseline  | Post-yoyo        | End            |                             |                     |                      |
|                                | p > 0.05            | $11.9 \pm 1.1$ | $11.9 \pm 1.3$  | $12.7 \pm 1.1$    | $11.9 \pm 1.2$   | $12.1 \pm 1.3$ |                             |                     |                      |
| Leal-Junior et al. [39]        | Active LLL          | Л              | Active clus     | ter LEDT          | PL               |                | Active LLLT                 | Active cluster LEDT | PL                   |
|                                | $12.20 \pm 0.4$     | 6              | $12.31 \pm 0.8$ | $12.36 \pm 12.36$ |                  | 59             | $9.55 \pm 0.35$             | $9.58 \pm 0.57$     | $9.64\pm0.39$        |
| p > 0.05                       |                     |                |                 |                   |                  |                | p > 0.05                    |                     |                      |
| Leal-Junior et al. [44] PL     |                     |                | LEDT            |                   | Cold water       | immersion      | PL                          | LEDT                | Cold water immersion |
|                                | $12 \pm 0.36$       |                | $12.70 \pm 1.2$ | 23                | $12.01 \pm 0.67$ |                | $9.39 \pm 0.48$<br>p > 0.05 | $9.98 \pm 1.29$     | $9.42 \pm 0.59$      |
|                                | p > 0.05            |                |                 |                   |                  |                |                             |                     |                      |
| Leal-Junior et al. [45]        | LEDT                |                |                 | PL                |                  |                | LEDT W/kg                   | PL W/kg             |                      |
|                                | $12.22 \pm 0.8$     | 32             |                 | $12.29 \pm 0.6$   | 50               |                | $9.54 \pm 0.60$             | $9.65 \pm 0.42$     |                      |
|                                | p > 0.05            |                |                 |                   |                  |                | p > 0.05                    |                     |                      |

LLLT low-level laser therapy, LEDT light emitting diode therapy, PL placebo

\*Statistically significant

<sup>a</sup> Unpublished data provided by author

of these outcomes (Tables 6 and 7). The authors attribute the lower concentrations of these inflammatory markers to the ergogenic effect of photobiomodulation therapy, such as blood lactate and CK outcomes [26, 29, 43].

The variables related to functional assessments, such as concentric peak torque, total work, 1-RM test, peak torque, mean peak torque, maximal force, and mean force were also described, few studies were found for each outcome, and the results were controversial (Tables 8, 9, 10, and 11). Increasing peak torque can be detected mainly in isometric contractions (MVC) in association to photobiomodulation therapy but without effect for other variables. These are important outcomes to consider for future studies because these variables can be related to "performance fatigability" (contractile capabilities) [67]. In addition, these measures could be related to the intensity of symptoms through self-report measurements [67], similar to performed by Pinto et al. [48].

The main reasons for the lack of positive results at any variable found in five studies are the small area covered by the photobiomodulation therapy irradiation or parameters used, showing the importance of the establishment of an optimal therapeutic window to reach the effects of photobiostimulation. The scanning mode of application used by Gorgey et al. [34] did not show positive results, which can be explained by the high refraction of the light and energy loss provided by this kind of application [11].

One of the limitations of this review is the risk of bias of included studies. In general, a high rate of unclear information was found, which means that some of our results could be uncertain. For example, a number of the included studies were hampered by unclear reporting of the technique used for allocation concealment and unclear selective reporting. It is important to note that the lack of allocation concealment may overestimate the effects of the therapy, and the observed effects may be due methodological bias. An additional limitation is the small sample size of the included studies. Photobiomodulation therapy combined with an exercise program to reduce muscle fatigue and improve performance has been studied since 2006, with the publication of the first experimental trial in this field [68]. Since 2008, studies with humans have been performed [38], with an increase in publications to date. Although most of these studies presented a sample size calculation, many of the studies reported sample size to be one of the limitations [25, 34, 39, 40, 44, 45, 54]. Given the relative novelty of this topic, the number of studies is still limited, and it is important to note that most published studies were conducted by the same research groups, which can also be considered a limitation.

We additionally observed that most of the studies performed a crossover design. Not reporting these studies would be a waste of research information, and it did not encompass the whole scientific information available. However, in this context, we cannot fully analyze the difference withinindividual because the studies did not provide sufficient data for this kind of analysis. For such, we decided to consider that the differences within individuals were known. The effects of the photobiomodulation therapy have been shown to be short-lived and reversible [43], and the crossover design can be considered suitable to investigate the effects of photobiomodulation therapy. Ideally, investigators should provide a rationale for using a crossover design, as well as testing the carryover effects, and missing data must be clear in the manuscript [69].

The authors should carefully report the reason for selecting this approach, how many days comprise the washout period, existence of carryover effects, and missing data. In the same rationale, the authors should be clear when reporting the results and provide the within-participants effects [70, 71]. In this review, some included

| Table 11   Maxima                                                                       | I force and mean fo                                                                                                  | rce                                                                        |                                          |                                                      |                                                                 |                                        |                            |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|----------------------------|
| Authors                                                                                 | Maximal force (k,                                                                                                    | gf)                                                                        |                                          |                                                      |                                                                 |                                        |                            |
| Almeida et al. [24]                                                                     | Red LLLT<br>23.83 $\pm 4.51$<br>Red LLLT $\times$ PL $_I$<br>Infrared LLLT $\times$ Infra<br>Red LLLT $\times$ infra | p < 0.05*<br>PL $p < 0.01*$<br>ured LLLT $p > 0.05$                        |                                          |                                                      | Infrared LLJ<br>24.33 ± 4.85                                    | CT PL<br>3 21.25 ± 4.93                |                            |
| Borges et al. [28]                                                                      | Pre<br>23.96 ± 5.52                                                                                                  | 24 h<br>13.69 ± 3.75                                                       | 48 h<br>14.19 ± 3.72                     | 72 h 96 h<br>14.75 ± 4.32 15.38 ± 4.09               | Pre 22.36 ± 5.71 17.31 ± 6.50                                   | 48 h 72 h<br>18.22 ± 7.51 20.57 ± 8.91 | 96 h<br>21.12 $\pm$ 9.16   |
| Kelencz et al. [37]                                                                     | Control 1.044 J<br>33.6 ± 9.8                                                                                        | Treated 1.044 J $37.4 \pm 13.9$                                            |                                          | Control 2.088 J 31.7 ± 9.7                           | Treated 2.088 J Control $3.13$<br>$32.8 \pm 8.0$ $20.0 \pm 7.8$ | (2 J Treated 3.13) $20.3 \pm 7.8$      | 2 J                        |
| Maciel et al. [46] <sup>a</sup>                                                         | $p \ge 0.05$<br>Control<br>$86.14 \pm 26.01$<br>p > 0.05                                                             |                                                                            |                                          | $\begin{array}{l} PL \\ 79.28 \pm 34.67 \end{array}$ | LLLT<br>78.67 ± 31.2                                            | 6                                      |                            |
| Authors                                                                                 | Mea                                                                                                                  | n force (kof)                                                              |                                          |                                                      |                                                                 |                                        |                            |
|                                                                                         |                                                                                                                      |                                                                            |                                          |                                                      |                                                                 |                                        |                            |
| Almeida et al. [24]                                                                     | Red<br>15.4<br>Red<br>Infra                                                                                          | LLLT<br>$6 \pm 1.98$<br>LLLT × PL $p < 0.05*$<br>ured LLLT × PL $p < 0.01$ | 5.*<br>                                  | Infrared LLLT<br>15.48 ± 2.84                        |                                                                 | PL<br>13.67 ± 2.05                     |                            |
| Borges et al. [28]                                                                      | nav                                                                                                                  |                                                                            | c0.0 < d                                 |                                                      |                                                                 |                                        |                            |
| Kelencz et al. [37]                                                                     | Con<br>18.6<br><i>p</i> > (                                                                                          | trol 1.044 J<br>± 7.5<br>3.05                                              | Treated 1.044 J<br>19.7 ± 7.8            | Control 2.088 J<br>19.6 ± 9.2                        | Treated 2.088 J $19.4 \pm 7.3$                                  | Control 3.132 J T<br>7.2 ± 4.9 7.      | reated 3.132 J<br>.9 ± 4.2 |
| Maciel et al. [46] <sup>a</sup>                                                         |                                                                                                                      |                                                                            |                                          |                                                      |                                                                 |                                        |                            |
| <i>LLLT</i> low-level lase<br>*Statistically signifi<br><sup>a</sup> Unpublished data r | r therapy, <i>LEDT</i> ligl<br>ant<br>arovided by author (                                                           | ht-emitting diode therapy<br>values originally in N co                     | y, <i>PL</i> placebo<br>onverted to kgf) |                                                      |                                                                 |                                        |                            |
|                                                                                         |                                                                                                                      |                                                                            |                                          |                                                      |                                                                 |                                        |                            |

 $\underline{\widehat{\mathcal{D}}}$  Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

### A Time to exhaustion

|                                         | Phot                 | othera | py     | PI      | acebo               |       |        | Mean Difference       | Mean Difference                          |
|-----------------------------------------|----------------------|--------|--------|---------|---------------------|-------|--------|-----------------------|------------------------------------------|
| Study or Subgroup                       | Mean                 | SD     | Total  | Mean    | SD                  | Total | Weight | IV, Random, 95% CI    | IV, Random, 95% CI                       |
| Hemmings 2017                           | 61.8                 | 38.7   | 34     | 48.6    | 32                  | 34    | 5.9%   | 13.20 [-3.68, 30.08]  | ++                                       |
| Higashi 2013                            | 25.1                 | 9.89   | 20     | 22.6    | 7.58                | 20    | 17.7%  | 2.50 [-2.96, 7.96]    | +                                        |
| Leal Junior 2010                        | 39.6                 | 4.3    | 9      | 34.6    | 5.6                 | 9     | 19.0%  | 5.00 [0.39, 9.61]     | +                                        |
| Leal-Junior 2008                        | 29.33                | 7.9    | 6      | 19.17   | 7.1                 | 6     | 13.3%  | 10.16 [1.66, 18.66]   |                                          |
| Leal-Junior 2009b                       | 38.6                 | 9.03   | 10     | 34.2    | 8.6                 | 10    | 14.3%  | 4.40 [-3.33, 12.13]   | +                                        |
| Leal-Junior 2009d                       | 30.1                 | 8.08   | 10     | 25.6    | 6.15                | 10    | 16.4%  | 4.50 [-1.79, 10.79]   | + <b>-</b> -                             |
| Reis 2014 (pre-LLLT day1)               | 31                   | 11.2   | 9      | 39.9    | 17.1                | 5     | 6.0%   | -8.90 [-25.58, 7.78]  |                                          |
| Reis post-LLLT day1                     | 28.7                 | 8.9    | 9      | 39.9    | 17.1                | 4     | 5.5%   | -11.20 [-28.94, 6.54] |                                          |
| Vieira 2014                             | 120.7                | 41.8   | 7      | 62.1    | 13.5                | 7     | 1.9%   | 58.60 [26.06, 91.14]  |                                          |
| Total (95% CI)                          |                      |        | 114    |         |                     | 105   | 100.0% | 4.88 [0.14, 9.62]     | ◆                                        |
| Heterogeneity: Tau <sup>2</sup> = 25.28 | ; Chi <sup>2</sup> = | 19.39, | df = 8 | (P = 0. | 01); I <sup>2</sup> | = 59% |        |                       |                                          |
| Test for overall effect: Z = 2.0        | 02 (P =              | 0.04)  |        |         |                     |       |        |                       | Favours [placebo] Favours [phototherapy] |

# **B** Number of repetitions

|                                         | Phot           | otherap | y       | P        | lacebo      |       |        | Mean Difference       | Mean Difference                          |
|-----------------------------------------|----------------|---------|---------|----------|-------------|-------|--------|-----------------------|------------------------------------------|
| Study or Subgroup                       | Mean           | SD      | Total   | Mean     | SD          | Total | Weight | IV, Random, 95% CI    | IV, Random, 95% CI                       |
| Alves 2014                              | 648            | 95      | 18      | 648      | 87          | 18    | 0.2%   | 0.00 [-59.51, 59.51]  |                                          |
| De Marchi 2012                          | 711.41         | 87.47   | 22      | 697.27   | 83.62       | 22    | 0.2%   | 14.14 [-36.43, 64.71] |                                          |
| Kelencz 2010 (2.088J)                   | 42.2           | 14.7    | 10      | 33.4     | 12.4        | 10    | 4.3%   | 8.80 [-3.12, 20.72]   | ++                                       |
| Leal Junior 2010                        | 41.3           | 5.1     | 9       | 38.2     | 3.2         | 9     | 39.0%  | 3.10 [-0.83, 7.03]    | -                                        |
| Leal-Junior 2008                        | 53.8           | 7.242   | б       | 41.15    | 7.1943      | 6     | 9.1%   | 12.65 [4.48, 20.82]   |                                          |
| Leal-Junior 2009b                       | 47.37          | 11.5    | 10      | 42.46    | 13.81       | 10    | 4.9%   | 4.91 [-6.23, 16.05]   |                                          |
| Leal-Junior 2009d                       | 37.15          | 6.45    | 10      | 34.34    | 6.77        | 10    | 18.0%  | 2.81 [-2.99, 8.61]    |                                          |
| Maciel 2013                             | 25.4           | 19.7    | 7       | 34.5     | 20.6        | 7     | 1.4%   | -9.10 [-30.22, 12.02] |                                          |
| Malta 2016                              | 154.6          | 36      | 15      | 155.5    | 37          | 15    | 0.9%   | -0.90 [-27.02, 25.22] |                                          |
| Miranda 2016                            | 780.2          | 91      | 20      | 742.1    | 94          | 20    | 0.2%   | 38.10 [-19.24, 95.44] |                                          |
| Reis 2014 (pre-LLLT day1)               | 36             | 9.2     | 9       | 41.1     | 14.7        | 4     | 2.5%   | -5.10 [-20.71, 10.51] |                                          |
| Reis post-LLLT day1                     | 34.2           | 7.9     | 9       | 41.1     | 14.7        | 5     | 3.1%   | -6.90 [-20.78, 6.98]  |                                          |
| Reis post-LLLT day8                     | 37.8           | 10.6    | 9       | 40.4     | 14.8        | 5     | 2.8%   | -2.60 [-17.31, 12.11] |                                          |
| Reis pre LLLT day8                      | 37.4           | 9.6     | 9       | 40.4     | 14.8        | 4     | 2.4%   | -3.00 [-18.80, 12.80] |                                          |
| Rossato 2016                            | 48.54          | 8.99    | 10      | 43.46    | 12.45       | 10    | 6.7%   | 5.08 [-4.44, 14.60]   |                                          |
| Rossato 2016                            | 49.67          | 13.69   | 10      | 44.13    | 12.73       | 10    | 4.5%   | 5.54 [-6.05, 17.13]   | - <del></del>                            |
| Total (95% CI)                          |                |         | 183     |          |             | 165   | 100.0% | 3.55 [1.09, 6.00]     | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.00; | $Chi^{2} = 13$ | .65, df | = 15 (P | = 0.55); | $ ^2 = 0\%$ |       |        |                       |                                          |
| Test for overall effect: Z = 2.3        | B3 (P = 0)     | .005)   |         |          |             |       |        |                       | Favours [placebo] Favours [phototherapy] |

Fig. 4 Meta-analysis time to exhaustion (a) and number of repetitions (b)

# A Isometric Peak Torque

|                                   | Phot     | otherap      | рy     | Р         | lacebo |            | :      | Std. Mean Difference | Std. Mean Difference                     |
|-----------------------------------|----------|--------------|--------|-----------|--------|------------|--------|----------------------|------------------------------------------|
| Study or Subgroup                 | Mean     | SD           | Total  | Mean      | SD     | Total      | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                       |
| Antonialli 2014                   | 271.22   | 26.55        | 12     | 187.95    | 31.68  | 12         | 6.5%   | 2.75 [1.58, 3.92]    |                                          |
| Baroni 2010a                      | 188.93   | 43.04        | 18     | 154.03    | 34.57  | 18         | 10.0%  | 0.87 [0.19, 1.56]    |                                          |
| Baroni 2010b                      | 237.68   | 48.82        | 17     | 225.68    | 44.14  | 17         | 10.1%  | 0.25 [-0.42, 0.93]   | <b>_</b>                                 |
| De Marchi 2017                    | 49.04    | 10.94        | 8      | 41.63     | 9.13   | 8          | 7.5%   | 0.70 [-0.32, 1.71]   |                                          |
| de Paiva 2016                     | 228.64   | 12.91        | 10     | 211.59    | 29.5   | 10         | 8.2%   | 0.72 [-0.19, 1.63]   |                                          |
| Fritsch 2016                      | 273.05   | 83.04        | 6      | 263.5     | 76.95  | б          | 6.7%   | 0.11 [-1.02, 1.24]   |                                          |
| Fritsch 2016                      | 254.22   | 43.13        | 6      | 266.24    | 41.78  | б          | 6.7%   | -0.26 [-1.40, 0.88]  |                                          |
| Hemmings 2017                     | 256.2    | 61.6         | 34     | 258.4     | 69.4   | 34         | 11.8%  | -0.03 [-0.51, 0.44]  |                                          |
| Rossato 2016                      | 76       | 11           | 7      | 77        | 13     | 7          | 7.2%   | -0.08 [-1.13, 0.97]  |                                          |
| Rossato 2016                      | 75       | 16           | б      | 75        | 14     | б          | 6.7%   | 0.00 [-1.13, 1.13]   |                                          |
| Vanin 2016                        | 239.04   | 24.96        | б      | 215.46    | 19.92  | б          | 6.1%   | 0.96 [-0.26, 2.19]   |                                          |
| Vanin 2016                        | 227.07   | 33.75        | 6      | 213.33    | 23.74  | б          | 6.6%   | 0.43 [-0.72, 1.59]   |                                          |
| Vanin 2016 MsC                    | 259.04   | 19.43        | 7      | 228.14    | 13.57  | 7          | 5.8%   | 1.73 [0.44, 3.02]    |                                          |
| Total (95% CI)                    |          |              | 143    |           |        | 143        | 100.0% | 0.57 [0.17, 0.97]    | ◆                                        |
| Heterogeneity: Tau <sup>2</sup> = | 0.30; Ch | $i^2 = 29$ . | 07, df | = 12 (P = | 0.004  | $  ^2 = 5$ | 9%     | -                    |                                          |
| Test for overall effect:          | Z = 2.77 | (P = 0.      | 006)   |           |        |            |        |                      | -2 -1 0 1 2                              |
|                                   |          | · · ·        | ,      |           |        |            |        |                      | Favours [placebo] Favours [phototherapy] |

### **B** Blood Lactate Levels

|                                          | Phot      | othera  | ру                   | P     | acebo |       |        | Mean Difference      | Mean Difference                          |
|------------------------------------------|-----------|---------|----------------------|-------|-------|-------|--------|----------------------|------------------------------------------|
| Study or Subgroup                        | Mean      | SD      | Total                | Mean  | SD    | Total | Weight | IV, Fixed, 95% CI    | IV, Fixed, 95% CI                        |
| Alves 2014                               | 7.2       | 2.3     | 18                   | 7.7   | 2.7   | 18    | 4.5%   | -0.50 [-2.14, 1.14]  |                                          |
| Denis 2013                               | 12.94     | 3.53    | 18                   | 13.27 | 3.73  | 18    | 2.1%   | -0.33 [-2.70, 2.04]  |                                          |
| Hemmings 2017                            | 1         | 1.36    | 34                   | 1.14  | 1.69  | 34    | 22.6%  | -0.14 [-0.87, 0.59]  |                                          |
| Leal Junior 2010                         | 2.2       | 0.54    | 9                    | 5.32  | 3.19  | 9     | 2.7%   | -3.12 [-5.23, -1.01] |                                          |
| Leal-Junior 2008                         | 3.92      | 0.5     | 6                    | 3.65  | 0.51  | 6     | 36.7%  | 0.27 [-0.30, 0.84]   |                                          |
| Leal-Junior 2009a                        | 9.94      | 1.75    | 8                    | 10.04 | 2.59  | 4     | 1.5%   | -0.10 [-2.91, 2.71]  |                                          |
| Leal-Junior 2009a (LED)                  | 10.03     | 1.74    | 8                    | 10.04 | 2.59  | 4     | 1.5%   | -0.01 [-2.82, 2.80]  |                                          |
| Leal-Junior 2009b                        | 11.6      | 3.99    | 10                   | 15.2  | 3.21  | 10    | 1.2%   | -3.60 [-6.77, -0.43] |                                          |
| Leal-Junior 2009c                        | 13.27     | 2.11    | 20                   | 13.66 | 2.89  | 20    | 4.9%   | -0.39 [-1.96, 1.18]  |                                          |
| Leal-Junior 2009d                        | 5.93      | 0.9     | 10                   | б.1   | 1.1   | 10    | 15.5%  | -0.17 [-1.05, 0.71]  | <b>_</b> _                               |
| Leal-Junior 2011a                        | 10.5      | 2.43    | б                    | 9.17  | 5.04  | б     | 0.6%   | 1.33 [-3.15, 5.81]   |                                          |
| Pinto 2016                               | 14.11     | 3.53    | 12                   | 15.1  | 2.74  | 12    | 1.9%   | -0.99 [-3.52, 1.54]  |                                          |
| Reis 2014 (post-LLLT day1)               | 4.42      | 2.59    | 9                    | 4.53  | 1.69  | 5     | 2.4%   | -0.11 [-2.36, 2.14]  |                                          |
| Reis 2014 (pre-LLLT day1)                | 4.7       | 2.69    | 9                    | 4.53  | 1.69  | 4     | 2.1%   | 0.17 [-2.24, 2.58]   |                                          |
| Total (95% CI)                           |           |         | 177                  |       |       | 160   | 100.0% | -0.15 [-0.49, 0.20]  | •                                        |
| Heterogeneity. Chi <sup>2</sup> = 15.41, | df = 13   | (P = 0) | .28); I <sup>2</sup> | = 16% |       |       |        | -                    |                                          |
| Test for overall effect: Z = 0.8         | 32 (P = 0 | 0.41)   |                      |       |       |       |        |                      | -4 -2 0 2 4                              |
|                                          |           |         |                      |       |       |       |        |                      | Favours (phototherapy) Favours (placebo) |

Fig. 5 Meta-analysis isometric peak torque (a) and blood lactate levels (b)

🖄 Springer

| Phototherapy corr<br>Bibliography: Dho | pared to placebo for                 | the improvement                | nt of muscle F       | berformance and                  | reduction of 1     | muscular fatigue in ł | nealthy pe | ople<br>ochrane Dataha | se of Systematic I | Avriance [veer] [cen                         | licenal                                                  |
|----------------------------------------|--------------------------------------|--------------------------------|----------------------|----------------------------------|--------------------|-----------------------|------------|------------------------|--------------------|----------------------------------------------|----------------------------------------------------------|
| Ouality assessmen                      | t                                    |                                | moriad arren         |                                  |                    |                       | Summary    | voluanc Datave         |                    | voviowa Lycarij, issu                        | -[aneer] a                                               |
| No of                                  | Rick of hige                         | Inconsistency                  | Indirectness         | Imprecision                      | Publication        | Overall mality of     | Study eve  | ent rates (%)          | Relative effect    | Anticinated absolu                           | te effects                                               |
| participants                           | MISK UI UIAS                         |                                | mmccmcss             | IIIIprecision                    | r uuncauon<br>bias | evidence              | With V     | With                   | (95% CI)           | Risk with blaceho                            | Rick difference                                          |
| Follow-up                              |                                      |                                |                      |                                  |                    |                       | placebo    | phototherapy           |                    | DUDY WILL PLACED                             | with phototherapy                                        |
| Time to exhaustio<br>348 (12 RCTs)     | n<br>Not serious                     | Not serious                    | Not serious          | Serious <sup>a,b,c,d</sup>       | None               | ⊕⊕⊕⊖ Moderate         | 165        | 183                    | I                  | The mean time to<br>exhaustion was           | MD 3.55 higher<br>(1.09 higher to                        |
| Blood lactate post                     | -5 min                               |                                |                      |                                  |                    |                       |            |                        |                    | 0                                            | 6 higher)                                                |
| 337 (13 KUIS)                          | Not serious                          | Not serious                    | Not serious          | Serious                          | None               | 0 Moderate            | 160        | 1//                    | I                  | I he mean blood<br>lactate<br>post-5 min was | MID 0.14 lower<br>(0.49 lower to<br>0.2 higher)          |
| Creatine kinase                        |                                      |                                |                      |                                  |                    |                       |            |                        |                    | 0                                            |                                                          |
| 266 (15 RCTs)                          | Not serious <sup>b.e</sup>           | Very<br>serious <sup>f.g</sup> | Serious <sup>h</sup> | Serious <sup>a</sup>             | None               | 000 Very low          | 133        | 133                    | I                  | The mean creatine<br>kinase was 0            | MD 0.63 lower<br>(0.89 lower to<br>0.36 lower)           |
| Number of repetit                      | ions                                 |                                |                      |                                  |                    |                       |            |                        |                    |                                              |                                                          |
| 219 (8 RCTs)                           | Not serious <sup>b,e</sup>           | Serious <sup>g</sup>           | Not serious          | Serious <sup>a</sup>             | None               | ⊕⊕⊙ Low               | 105        | 114                    | I                  | The mean number<br>of repetitions            | MD 4.88 higher<br>(0.14 higher to                        |
| C-reactive protein                     | (assessed with: bloc                 | od sample)                     |                      |                                  |                    |                       |            |                        |                    | was 0                                        | 9.02 higher)                                             |
| 50 (3 RCTs)                            | Serious <sup>b,e</sup>               | Not serious                    | Not serious          | Very serious <sup>c,i</sup>      | None               | <b>O</b> OO Very low  | 25         | 25                     | I                  | Not pooled                                   | Not pooled                                               |
| Lactate dehydroge                      | mase (LDH) (assessi                  | ed with: blood si              | ample)               |                                  |                    |                       |            |                        |                    |                                              |                                                          |
| 120 (3 RCTs)                           | Serious <sup>b,e</sup>               | Not serious                    | Not serious          | Very serious <sup>c,i</sup>      | None               | <b>O</b> 000 Very low | 60         | 09                     | I                  | Not pooled                                   | Not pooled                                               |
| Isometric peak tor                     | due                                  | i                              |                      | ľ                                |                    |                       |            |                        |                    |                                              |                                                          |
| 286 (10 RCTs)                          | Very serious <sup>b,dJ</sup>         | Serious <sup>e</sup>           | Not serious          | Serious <sup>a</sup>             | None               | ⊕000 Very low         | 143        | 143                    | I                  | I                                            | SMD 0.57 SD<br>higher (0.17<br>higher to 0.97<br>higher) |
| Total work                             |                                      |                                |                      |                                  |                    |                       |            |                        |                    |                                              |                                                          |
| 140 (4 RCTs)                           | Very<br>serious <sup>b,d,k,l,m</sup> | Not serious                    | Not serious          | Serious <sup>a,i,m</sup>         | None               | 000 Very low          | 70         | 70                     | Ι                  | Not pooled                                   | Not pooled                                               |
| 78 (4 RCTs)                            | Serious <sup>b,d,n</sup>             | Not serious                    | Not serious          | Very<br>serious <sup>a,i,m</sup> | None               | <b>O</b> 000 Very low | 39         | 39                     | I                  | Not pooled                                   | Not pooled                                               |

 Table 12
 Quality of evidence assessment (GRADE)

Lasers Med Sci (2018) 33:181-214

| (continued) | apy compare |
|-------------|-------------|
| Table 12    | Photothera  |

| eople  |
|--------|
| ıy pe  |
| iealtl |
| in t   |
| tigue  |
| ar fa  |
| ıscul  |
| of mu  |
| ion c  |
| duct   |
| nd re  |
| ce aı  |
| man    |
| erfoi  |
| cle p  |
| snu    |
| t of   |
| emer   |
| prov   |
| e imj  |
| or th  |
| ibo fi |
| place  |
| d to J |
| parec  |
| comj   |
| apy    |
| othei  |

| Bibliography: Ph                         | ototherapy for the in                    | nprovement of m           | uscle perform: | ance and reduction          | on of muscula       | r fatigue in healthy | people. Co      | chrane Databa        | se of Systematic F | ceviews [year], Issue | e [issue].                           |
|------------------------------------------|------------------------------------------|---------------------------|----------------|-----------------------------|---------------------|----------------------|-----------------|----------------------|--------------------|-----------------------|--------------------------------------|
| Quality assessmen                        | nt                                       |                           |                |                             |                     |                      | Summary         | of findings          |                    |                       |                                      |
| No. of                                   | Risk of bias                             | Inconsistency             | Indirectness   | Imprecision                 | Publication<br>biog | Overall quality of   | Study eve       | nt rates (%)         | Relative effect    | Anticipated absolut   | te effects                           |
| parucupanus<br>(studies)<br>Follow-up    |                                          |                           |                |                             | Ulds                | extreme              | With<br>placebo | With<br>phototherapy | (22.% C1)          | Risk with placebo     | Risk difference<br>with phototherapy |
| Peak power<br>152 (4 RCTs)               | Serious <sup>b,e,o</sup>                 | Not serious               | Not serious    | Very serious <sup>a,i</sup> | None                | <b>O</b> 00 Very low | 76              | 76                   | I                  | Not pooled            | Not pooled                           |
| Mean peak power<br>40 (3 RCTs)           | r<br>Serious <sup>b.e</sup>              | Not serious               | Not serious    | Very serious <sup>a,i</sup> | None                | ⊕000 Very low        | 20              | 20                   | I                  | Not pooled            | Not pooled                           |
| Maximal force<br>111 (4 RCTs)            | Serious <sup>b</sup>                     | Very serious <sup>p</sup> | Not serious    | Very serious <sup>a,i</sup> | None                | ⊕000 Very low        | 55              | 56                   | I                  | Not pooled            | Not pooled                           |
| Mean force<br>80 (2 RCTs)                | Serious <sup>b.0</sup>                   | Serious <sup>p</sup>      | Not serious    | Very serious <sup>a,i</sup> | None                | acco Very low        | 40              | 40                   | I                  | Not pooled            | Not pooled                           |
| <i>CI</i> confidence inter               | erval, <i>MD</i> mean diff               | Ference, SMD star         | ndardized mea  | in difference               |                     |                      |                 |                      |                    |                       |                                      |
| <sup>b</sup> Unclear allocatic           | of the studies is smanner on concealment | all, and the variat       | outly between  | exercises and pl            | nototherapy pi      | otocols is wide      |                 |                      |                    |                       |                                      |
| ° Wide confidence                        | e intervals                              |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| d Selective report                       |                                          |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| <sup>e</sup> Unclear selectiv            | e report                                 |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| f Unexplained het                        | erogeneity                               |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| <sup>g</sup> Wide heterogen              | eity                                     |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| <sup>h</sup> Variability in tin          | te points and types o                    | of physical activit       | ties           |                             |                     |                      |                 |                      |                    |                       |                                      |
| <sup>i</sup> Few events and <sub>l</sub> | participants                             |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |
| <sup>j</sup> One pilot study             |                                          |                           |                |                             |                     |                      |                 |                      |                    |                       |                                      |

<sup>p</sup> Different target muscles

<sup>n</sup> Lack of blinding of participants, personnel, and/or outcome assessors ° Unclear how the authors performed the randomization process

<sup>1</sup>Lack of blinding of participants and personnel

<sup>k</sup> Attrition bias

<sup>m</sup> No placebo group (one study)

Fig. 6 Effective doses for small

and large muscular groups



studies that reported 1 month [35], 1 week [20, 25, 30, 36, 39–45, 48], 72 h [27], and 48 h of washout [34, 46, 47, 50, 54]. One did not report the time between sessions [29]. Because some studies performed the assessments with a follow-up of 96 h, at least 1 week between the testing sessions seems reasonable to prevent carryover effects in studies with photobiomodulation therapy.

A further concern is regarding the variability of exercise protocols and photobiomodulation therapy parameters used in the studies. As our definition on performance comprises physical exercise or sport in general, and the research question does not limit to a specific kind of physical activity, we decided to include in the whole evidence. Nevertheless, replication of some studies would be necessary to confirm the effects.

Some studies evaluated the effects of photobiomodulation therapy in the field with specific sports testing [48, 55] or matches [56]. Positive effects were found in the study conducted by Ferraresi et al. [56] in preventing increases in CK activity when photobiomodulation therapy was applied before four volleyball matches. However, this study presented serious problems regarding methodology, data analysis and data interpretation [72] besides not monitoring the level of activity of each participant during each match, which can alter the level of this enzyme.

In fact, research with athletes in the field is very interesting and important for sports practice. It is a novel setting in the photobiomodulation therapy research, and it must be investigated to confirm the previous findings.

The primary strength of our study is that we systematically summarized important results related to photobiomodulation therapy in performance and fatigue, comprising all evidence in this research field to date. Another strength is our methodological design because we did not define any restriction on the date of publication or language. In addition, we performed manual search though references lists of the manuscripts and lists of publications from more cited authors in this field. By this approach, we believe that we could compile the whole scientific literature available. Furthermore, we registered the review protocol before starting the research, ensuring the transparency of the review process as suggested by the PRISMA statement [73].

With regard to data extraction, another strength of our study is that when data of the studies were unavailable or in case of

Deringer

any doubt regarding the studies, we contacted the authors through e-mail. Although not all authors have replied to emails, we managed to gather the most information possible.

### Implications for current practice

The application of photobiomodulation therapy combined with exercise has shown to be effective on improving muscular performance and reducing the signals of fatigue. This is a promising area of research, and interesting results can be found in the current literature [74].

Photobiomodulation therapy associated with exercise seems to be a valuable alternative to improve muscular performance, and consequently, reduce the recovery time between exercise sessions. The beneficial effects could be observed in both untrained individuals and athletes, which means that this intervention could be an alternative to shorter rehabilitation processes for patients and also for better performance in sports, which could be observed from the data and author's conclusions of the most studies included in this systematic review. However, the quality of the body evidence assessment showed very low to moderate quality to the main outcomes, showing that further research must be performed to be confident about the effects. We attribute this quality level mainly to the risk of bias category and the imprecision of the results due the small sample size and wide confidence intervals of the outcomes (Table 12).

Meta-analysis was possible for only four outcomes, and we found that some evidence shows that photobiomodulation therapy has an effect for these outcomes. Therefore, more studies are needed to conclude the effect of this therapy in improvement of performance, both in functional outcomes and biochemical markers related to recovery.

### **Future recommendations**

Important gaps for future studies were found in this review based on the methodological limitations. We strongly recommend the attention by researchers for reporting guidelines as the Consolidated Standards of Reporting Trials (CONSORT) statement to perform the trials [75, 76]. Recently, it was copublished on JOSPT (originally published in the Journal of Physiotherapy in 2016) an editorial encouraging authors to follow the Tidier checklist (template for intervention description and replication) to confirm if all items required were reported in the manuscript before submission [77]. This is a means to reduce bias and assist the authors to follow an adequate, clear, and transparent reporting and design.

However, there is no guideline for reporting crossover trials. The high proportion of lack of information in the reports found in this review led us to encourage reviewers and investigators regarding the need for reporting guidelines for crossover trials. Moreover, future studies should present their data in absolute values and their respective variation, as mean  $\pm$  SD, with detailed description.

Further concern should be taken in reporting photobiomodulation therapy parameters. These parameters should be shown in detailed form, such as in a table in the manuscript, to provide more information for the reader regarding the device used and allow the study replication by other authors [78].

Finally, more research is needed in this area with greater sample size, better methodological design, and detailed photobiomodulation therapy parameters to increase the quality of evidence and confidence that the estimated effects are true. In this review, we could detect for the very first time a "therapeutic window" in this exciting field, and we encourage the authors to improve the investigation around this range of photobiomodulation therapy parameters.

# Conclusion

Our results suggest that the application of photobiomodulation therapy associated with exercise may improve muscular performance and reduce the signals of muscle fatigue. The best effects of photobiomodulation therapy were observed mainly when LLLT, LEDT, or the combination of both sources of lights were used before the exercise in direct contact with the skin with wavelengths from 655 to 950 nm. Most of positive results were observed with an energy dose range from 20 to 60 J for small muscular groups and 60 to 300 J for large muscular groups and maximal power output of 200 mW per diode.

Despite the detailed analysis of the individual studies, it must be viewed with caution due to the very low- to moderate-quality evidence of the body of studies.

We conclude that more studies with better methodological quality, greater sample size, and following a therapeutic window are needed to predict the effects and effectiveness of this therapy.

**Funding information** Adriane Aver Vanin would like to thank São Paulo Research Foundation (FAPESP) for the PhD scholarship grant number 2013/19355-3 and PhD abroad internship number 2015/19619-6. Professor Ernesto Cesar Pinto Leal-Junior would like to thank São Paulo Research Foundation - FAPESP (grant number 2010/52404-0) and Brazilian Council of Science and Technology Development - CNPq (grant numbers 472062/2013-1 and 307717/2014-3).

### Compliance with ethical standards

**Conflict of interests** Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. AAV, EV, SDB, and LPC declare that they have no conflicts of interest.

# References

- Saw AE, Main LC, Gastin PB (2016) Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med 50(5):281–291. https://doi.org/10.1136/bjsports-2015-094758
- van Reijen M, Vriend I, van Mechelen W, Finch CF, Verhagen EA (2016) Compliance with sport injury prevention interventions in randomised controlled trials: a systematic review. Sports Med. https://doi.org/10.1007/s40279-016-0470-8
- Nakhostin Ansari N, Naghdi S, Karimi H, Fakhari Z, Hasson S (2016) A randomized controlled pilot study to investigate the effect of whole body vibration on lower extremity fatigue. J Sport Rehabil. https://doi.org/10.1123/jsr.2015-0202
- Engel FA, Holmberg HC, Sperlich B (2016) Is there evidence that runners can benefit from wearing compression clothing? Sports Med. https://doi.org/10.1007/s40279-016-0546-5
- LaBella CR, Huxford MR, Grissom J, Kim KY, Peng J, Christoffel KK (2011) Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med 165(11): 1033–1040. https://doi.org/10.1001/archpediatrics.2011.168
- Machado AF, Ferreira PH, Micheletti JK, de Almeida AC, Lemes IR, Vanderlei FM et al (2016) Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med 46(4):503–514. https://doi.org/10.1007/s40279-015-0431-7
- Weerapong P, Hume PA, Kolt GS (2005) The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med 35(3):235–256
- Calleja-Gonzalez J, Terrados N, Mielgo-Ayuso J, Delextrat A, Jukic I, Vaquera A et al (2016) Evidence-based post-exercise recovery strategies in basketball. Phys Sportsmed 44(1):74–78. https://doi. org/10.1080/00913847.2016.1102033
- 9. Barnett A (2006) Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 36(9):781–796
- Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48(1):57–67. https://doi.org/10. 4085/1062-6050-48.1.12
- Leal-Junior ECP, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with metaanalysis. Lasers Med Sci 30(2):925–939. https://doi.org/10.1007/ s10103-013-1465-4
- Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. https://doi.org/10.1007/s10439-011-0454-7
- Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose-response

9(4):602–618. https://doi.org/10.2203/dose-response.11-009. Hamblin

- Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PR et al (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976. https://doi.org/10.1007/s10103-014-1611-7
- Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA et al (2014) Effect of pre-irradiation with different doses, wavelengths, and application intervals of lowlevel laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30:59–66. https://doi.org/10. 1007/s10103-014-1616-2
- Houreld NN, Masha RT, Abrahamse H (2012) Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med 44(5):429–434. https://doi.org/10. 1002/lsm.22027
- De Marchi T, Schmitt VM, Machado GP, de Sene JS, de Col CD, Tairova O et al (2017) Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. Lasers Med Sci 32(2):429–437. https://doi.org/10.1007/s10103-016-2139-9
- de Paiva PR, Tomazoni SS, Johnson DS, Vanin AA, Albuquerque-Pontes GM, Machado CD et al (2016) Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med Sci 31(9):1925–1933. https://doi.org/10.1007/ s10103-016-2071-z
- de Souza CG, Borges DT, de Brito Macedo L, Brasileiro JS (2016) Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. Lasers Med Sci 31(9):1949–1955. https://doi.org/10.1007/s10103-016-2074-9
- 20. Miranda EF, Vanin AA, Tomazoni SS, Grandinetti VD, de Paiva PR, Machado CD et al (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train. https://doi.org/10.4085/ 1062-6050-51.3.10
- Machado AF, Micheletti JK, Vanderlei FM, Nakamura FY, Leal Junior ECP, Netto Junior J et al (2017) Effect of low-level laser therapy (LLLT) and light-emitting diodes (LEDT) applied during combined training on performance and post-exercise recovery: protocol for a randomized placebo-controlled trial. Braz J Phys Ther 21(4):296–304. https://doi.org/10.1016/j.bjpt.2017.05.010
- 22. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from http://www.handbook. cochrane.org
- Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64(4):401–406. https://doi.org/10.1016/ j.jclinepi.2010.07.015
- Almeida P, Lopes-Martins RA, De Marchi T, Tomazoni SS, Albertini R, Correa JC et al (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27(2):453–458. https:// doi.org/10.1007/s10103-011-0957-3
- 25. da Silva Alves MA, Pinfildi CE, Neto LN, Lourenço RP, de Azevedo PHSM, Dourado VZ et al (2014) Acute effects of lowlevel laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci 29:1945–1951. https://doi.org/10.1007/s10103-014-1595-3
- Baroni BM, Leal Junior EC, Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise

reduces muscle damage markers in humans. Eur J Appl Physiol. https://doi.org/10.1007/s00421-010-1562-z

- Baroni BM, Leal Junior ECP, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28:653–658. https:// doi.org/10.1089/pho.2009.2688
- Borges LS, Cerqueira MS, dos Santos Rocha JA, Conrado LA, Machado M, Pereira R et al (2014) Light-emitting diode phototherapy improves muscle recovery after a damaging exercise. Lasers Med Sci. https://doi.org/10.1007/s10103-013-1486-z
- De Marchi T, Leal ECP, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27: 231–236. https://doi.org/10.1007/s10103-011-0955-5
- Denis R, O'Brien C, Delahunt E (2013) The effects of light emitting diode therapy following high intensity exercise. Phys Ther Sport 14(2):110–115. https://doi.org/10.1016/j.ptsp.2012.03.014
- Felismino AS, Costa EC, Aoki MS, Ferraresi C, De Araújo Moura Lemos TM, De Brito Vieira WH (2014) Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med Sci 29:933– 938. https://doi.org/10.1007/s10103-013-1430-2
- 32. Ferraresi C, de Brito Oliveira T, De Oliveira Zafalon L, De Menezes Reiff RB, Baldissera V, de Andrade Perez SE et al (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26:349–358. https://doi.org/10.1007/ s10103-010-0855-0
- 33. Fritsch CG, Dornelles MP, Severo-Silveira L, Marques VB, Rosso IA, Baroni BM (2016) Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers Med Sci 31(9):1935–1942. https://doi.org/10.1007/s10103-016-2072-y
- Gorgey AS, Wadee AN, Sobhi NN (2008) The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg 26:501–506. https://doi.org/10.1089/pho. 2007.2161
- Hemmings TJ, Kendall KL, Dobson JL (2017) Identifying dosage effect of light-emitting diode therapy on muscular fatigue in quadriceps. J Strength Cond Res 31(2):395–402. https://doi.org/10. 1519/JSC.000000000001523
- Higashi RH, Toma RL, Tucci HT, Pedroni CR, Ferreira PD, Baldini G et al (2013) Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomed Laser Surg 31:586– 594. https://doi.org/10.1089/pho.2012.3388
- Kelencz CA, Munoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminum-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Surg 28(5):647–652. https://doi.org/10.1089/pho.2008.2467
- Leal-Junior ECP, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA et al (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg. https://doi.org/10.1089/pho.2007.2160
- Leal-Junior ECP, Lopes-Martins RA, Baroni BM, Marchi T, Rossi RP, Grosselli D et al (2009) Comparison between single-diode lowlevel laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg. https://doi.org/10.1089/pho.2008.2350
- 40. Leal-Junior ECP, Lopes-Martins RA, Rossi RP, Marchi T, Baroni BM, Godoi V et al (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. https://doi.org/10.1002/lsm.20810
- 41. Leal-Junior ECP, Lopes-Martins RÁB, Baroni BM, De Marchi T, Taufer D, Manfro DS et al (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle

🖄 Springer

recovery in athletes. Lasers Med Sci 24:857-863. https://doi.org/ 10.1007/s10103-008-0633-4

- Leal-Junior ECP, Lopes-Martins RABÁB, Vanin AA, Baroni BM, Grosselli D, De Marchi T et al (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24:425–431. https://doi.org/10.1007/s10103-008-0592-9
- 43. Leal-Junior ECP, Lopes-Martins RAB, Frigo L, De Marchi T, Rossi RP, de Godoi V et al (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532. https://doi.org/ 10.2519/jospt.2010.3294
- 44. Leal-Junior ECP, Godoi V, Mancalossi JL, Rossi RP, Marchi T, Parente M et al (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in shortterm skeletal muscle recovery after high-intensity exercise in athletes–preliminary results. Lasers Med Sci. https://doi.org/10. 1007/s10103-010-0866-x
- 45. Leal-Junior ECP, Baroni BM, Rossi RP, Godoi V, De Marchi T, Tomazoni SS et al (2011) Light emitting diode therapy (LEDT) applied pre-exercise inhibits lipid peroxidation in athletes after high-intensity exercise. A preliminary study. Rev Bras Med Esporte 17(1):8–12
- Maciel TSS, Silva J, Jorge FS, Nicolau RA (2013) A influência do laser 830 nm no desempenho do salto de atletas de voleibol feminino. Braz J Biomed Eng 29(2):199–205
- 47. Malta ES, De Poli RA, Brisola GM, Milioni F, Miyagi WE, Machado FA et al (2016) Acute LED irradiation does not change the anaerobic capacity and time to exhaustion during a highintensity running effort: a double-blind, crossover, and placebocontrolled study : effects of LED irradiation on anaerobic capacity and performance in running. Lasers Med Sci 31(7):1473–1480. https://doi.org/10.1007/s10103-016-2011-y
- Pinto HD, Vanin AA, Miranda EF, Tomazoni SS, Johnson DS, Albuquerque-Pontes GM et al (2016) Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res 30(12): 3329–3338. https://doi.org/10.1519/JSC.000000000001439
- Reis FA, da Silva BA, Salvador Laraia EM, de Melo RM, Silva PH, Pinto Leal-Junior EC et al (2014) Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomed Laser Surg 32:106–112. https://doi. org/10.1089/pho.2013.3617
- Rossato M, Dellagrana RA, Lanferdini FJ, Sakugawa RL, Lazzari CD, Baroni BM et al (2016) Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers Med Sci 31(6):1237–1244. https://doi.org/10.1007/ s10103-016-1973-0
- 51. Vanin AA, De Marchi T, Silva Tomazoni S, Tairova O, Leao Casalechi H, de Tarso Camillo de Carvalho P et al (2016) Preexercise infrared low-level laser therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans, what is the optimal dose? A randomized, double-blind, placebo-controlled clinical trial. Photomed Laser Surg 34(10):473–482. https://doi. org/10.1089/pho.2015.3992
- 52. Vanin AA, Miranda EF, Machado CS, de Paiva PR, Albuquerque-Pontes GM, Casalechi HL et al (2016) What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial: phototherapy in association to strength training. Lasers Med Sci 31(8):1555– 1564. https://doi.org/10.1007/s10103-016-2015-7
- Vieira WHB, Ferraresi C, Andrade Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm)

on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci. https://doi.org/10.1007/s10103-011-0984-0

- Vieira WHB, Bezerra RM, Queiroz RAS, Maciel NFB, Parizotto NA, Ferraresi C (2014) Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomed Laser Surg 32(12):678–685. https://doi.org/10.1089/ pho.2014.3812
- 55. Zagatto AM, de Paula Ramos S, Nakamura FY, de Lira FS, Lopes-Martins RÁB, de Paiva Carvalho RL (2016) Effects of low-level laser therapy on performance, inflammatory markers, and muscle damage in young water polo athletes: a double-blind, randomized, placebo-controlled study. Lasers Med Sci 31(3):511–521. https:// doi.org/10.1007/s10103-016-1875-1
- 56. Ferraresi C, Dos Santos RV, Marques G, Zangrande M, Leonaldo R, Hamblin MR et al (2015) Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci. https://doi.org/10. 1007/s10103-015-1728-3
- Bosquet L, Berryman N, Dupuy O, Mekary S, Arvisais D, Bherer L et al (2013) Effect of training cessation on muscular performance: a meta-analysis. Scand J Med Sci Sports 23(3):e140–e149. https:// doi.org/10.1111/sms.12047
- Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL (2010) Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. Int J Sports Med 31(2):82– 88. https://doi.org/10.1055/s-0029-1243168
- 59. Hegedus EJ, McDonough S, Bleakley C, Cook CE, Baxter GD (2015) Clinician-friendly lower extremity physical performance measures in athletes: a systematic review of measurement properties and correlation with injury, part 1. The tests for knee function including the hop tests. Br J Sports Med 49(10):642–648. https:// doi.org/10.1136/bjsports-2014-094094
- Castronovo AM, Conforto S, Schmid M, Bibbo D, D'Alessio T (2013) How to assess performance in cycling: the multivariate nature of influencing factors and related indicators. Front Physiol 4:1– 10. https://doi.org/10.3389/fphys.2013.00116
- Glaister M, Stone MH, Stewart AM, Hughes M, Moir GL (2004) The reliability and validity of fatigue measures during shortduration maximal-intensity intermittent cycling. J Strength Cond Res 18(3):459–462. https://doi.org/10.1519/1533-4287(2004) 18<459:TRAVOF>2.0.CO;2
- Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74:219–227
- Zhang J, Lockhart TE, Soangra R (2014) Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann Biomed Eng 42:600–612. https://doi.org/10. 1007/s10439-013-0917-0
- 64. Hody S, Rogister B, Leprince P, Wang F, Croisier JL (2013) Muscle fatigue experienced during maximal eccentric exercise is predictive of the plasma creatine kinase (CK) response. Scand J Med Sci Sports 23(4):501–507. https://doi.org/10.1111/j.1600-0838.2011. 01413.x
- Johnston RD, Gabbett TJ, Seibold AJ, Jenkins DG (2014) Influence of physical contact on neuromuscular fatigue and markers of muscle damage following small-sided games. J Sci Med Sport 17(5): 535–540. https://doi.org/10.1016/j.jsams.2013.07.018
- Baroni BM, Rodrigues R, Freire BB, Franke RDA, Geremia JM, Vaz MA (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115: 639–647. https://doi.org/10.1007/s00421-014-3055-y
- Enoka RM, Duchateau J (2016) Translating fatigue to human performance. Med Sci Sports Exerc 48(11):2228–2238. https://doi.org/ 10.1249/MSS.0000000000929
- Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F et al (2006) Effect of low-level laser

(Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol (1985) 101(1):283–288. https://doi.org/10.1152/japplphysiol.01318.2005

- Li T, Yu T, Hawkins BS, Dickersin K (2015) Design, analysis, and reporting of crossover trials for inclusion in a meta-analysis. PLoS One 10(8):e0133023. https://doi.org/10.1371/journal.pone. 0133023
- Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A (2002) Meta-analyses involving cross-over trials: methodological issues. Int J Epidemiol 31(1):140–149
- Mills EJ, Chan AW, Wu P, Vail A, Guyatt GH, Altman DG (2009) Design, analysis, and presentation of crossover trials. Trials 10:27. https://doi.org/10.1186/1745-6215-10-27
- Nampo FK, Weiss C, Porzsolt F (2016) Comments on "light-emitting diode therapy (ledt) before matches prevents increase in creatine kinase with a light dose response in volleyball players". Lasers Med Sci 31(6):1273–1274. https://doi.org/10.1007/s10103-016-1940-9
- Stewart L, Moher D, Shekelle P (2012) Why prospective registration of systematic reviews makes sense. Syst Rev 1:7. https://doi. org/10.1186/2046-4053-1-7

- 74. Lopes-Martins RA, Mafra FP, De Nucci G (2016) Laser therapy and muscle fatigue: a promising research area. Photomed Laser Surg 34(7):273–275. https://doi.org/10.1089/pho.2016.4130
- Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ et al (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol 63(8):e1–37. https://doi.org/10.1016/j. jclinepi.2010.03.004
- Costa LO, Maher CG, Lopes AD, de Noronha MA, Costa LC (2011) Transparent reporting of studies relevant to physical therapy practice. Rev Bras Fisioter 15(4):267–271
- Yamato T, Maher C, Saragiotto B, Moseley A, Hoffmann T, Elkins M et al (2016) The TIDieR checklist will benefit the physical therapy profession. J Orthop Sports Phys Ther 46(6):402–404. https:// doi.org/10.2519/jospt.2016.0108
- Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29(12):785–787. https:// doi.org/10.1089/pho.2011.9895

# Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH ("Springer Nature").

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users ("Users"), for smallscale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use ("Terms"). For these purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may not:

- 1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access control;
- 2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is otherwise unlawful;
- 3. falsely or misleadingly imply or suggest endorsement, approval, sponsorship, or association unless explicitly agreed to by Springer Nature in writing;
- 4. use bots or other automated methods to access the content or redirect messages
- 5. override any security feature or exclusionary protocol; or
- 6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue, royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law, including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com